范文一:体积计算公式
最佳答案
bowen2000 2008-10-30 16:37:53 60.180.92.*
V=1/3*pai*(R^2+Rr+r^2)*h
推导过程:
S1=pai*r1^2
S2=pai*r2^2
H1-H2=h
R/(H2+h)=r/H2
H2=rh/(R-r)
H1=H2+h=Rh/(R-r)
V=1/3*pai*R^2*H1-1/3*pai*r^2*H2
=1/3*pai*R^2*Rh/(R-r)-1/3*pai*r^2*rh/(R-r)
=1/3*pai*h*(R^3-r^3)/(R-r)
=1/3*pai*(R^2+Rr+r^2)*h
一个在锥和一个圆柱的体积之比为1 2底面半径之比为2 3它们高的比是多少 [数学 ]
悬赏点数 10 该提问已被关闭 2个回答
广东过客 2009-03-30 20:34:29 219.130.172.*
一个在锥和一个圆柱的体积之比为1 2底面半径之比为
最佳答案
乌克兰一号 2009-03-31 08:55:41 219.239.108.*
圆柱的体积=π*R*R*H
锥的体积=π*r*r*h/3
按照题意π*R*R*H*2=π*r*r*h/3, r:R=2:3
带入计算有:H*9/4=h*2
圆柱的侧面积=底面圆的周长×高
圆柱的表面积=上下底面面积+侧面积
圆柱的体积=底面积×高
圆锥的体积=底面积×高÷3
平面图形
名称 符号 周长C 和面积S
正方形 a —边长 C =4a
S =a2
长方形 a 和b -边长 C =2(a+b)
S =ab
三角形 a,b,c -三边长
h -a 边上的高
s -周长的一半
A,B,C -内角
其中s =(a+b+c)/2 S =ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
四边形 d,D -对角线长
α-对角线夹角 S =dD/2·sinα
平行四边形 a,b -边长
h -a 边的高
α-两边夹角 S =ah
=absinα
菱形 a -边长
α-夹角
D -长对角线长
d -短对角线长 S =Dd/2
=a2sinα
梯形 a 和b -上、下底长
h -高
m -中位线长 S =(a+b)h/2
=mh
圆 r -半径
d -直径 C =πd=2πr
S =πr2
=πd2/4
扇形 r —扇形半径
a —圆心角度数
C =2r +2πr×(a/360)
S =πr2×(a/360)
弓形 l -弧长
b -弦长
h -矢高
r -半径
α-圆心角的度数 S =r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/2·[r2-(b/2)2]1/2
=r(l-b)/2 + bh/2
≈2bh/3
圆环 R -外圆半径
r -内圆半径
D -外圆直径
d -内圆直径 S =π(R2-r2)
=π(D2-d2)/4
椭圆 D -长轴
d -短轴 S =πDd/4
立方图形
名称 符号 面积S 和体积V
正方体 a -边长 S =6a2
V =a3
长方体 a -长
b -宽
c -高 S =2(ab+ac+bc)
V =abc
棱柱 S -底面积
h -高 V =Sh
棱锥 S -底面积
h -高 V =Sh/3
棱台 S1和S2-上、下底面积
h -高 V =h[S1+S2+(S1S1)1/2]/3
拟柱体 S1-上底面积
S2-下底面积
S0-中截面积
h -高 V =h(S1+S2+4S0)/6
圆柱 r -底半径
h -高
C —底面周长
S 底—底面积
S 侧—侧面积
S 表—表面积 C =2πr
S 底=πr2
S 侧=Ch
S 表=Ch+2S底
V =S 底h
=πr2h
空心圆柱 R -外圆半径
r -内圆半径
h -高 V =πh(R2-r2)
直圆锥 r -底半径
h -高 V =πr2h/3
圆台 r -上底半径
R -下底半径
h -高 V =πh(R2+Rr +r2)/3
球 r -半径
d -直径 V =4/3πr3=πd2/6
球缺 h -球缺高
r -球半径
a -球缺底半径 V =πh(3a2+h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
球台 r1和r2-球台上、下底半径
h -高 V =πh[3(r12+r22)+h2]/6
圆环体 R -环体半径
D -环体直径
r -环体截面半径
d -环体截面直径 V =2π2Rr2
=π2Dd2/4
桶状体 D -桶腹直径
d -桶底直径
h -桶高 V =πh(2D2+d2)/12
(母线是圆弧形, 圆心是桶的中心)
V =πh(2D2+Dd +3d2/4)/15
(母线是抛物线形)
长方形的周长=(长+宽)×2
正方形的周长=边长×4
长方形的面积=长×宽
正方形的面积=边长×边长
三角形的面积=底×高÷2
平行四边形的面积=底×高
梯形的面积=(上底+下底)×高÷2
直径=半径×2 半径=直径÷2
圆的周长=圆周率×直径=
圆周率×半径×2
圆的面积=圆周率×半径×半径
长方体的表面积=
(长×宽+长×高+宽×高)×2
长方体的体积 =长×宽×高
正方体的表面积=棱长×棱长×6
正方体的体积=棱长×棱长×棱长
圆柱的侧面积=底面圆的周长×高
圆柱的表面积=上下底面面积+侧面积
圆柱的体积=底面积×高
圆锥的体积=底面积×高÷3
长方体(正方体、圆柱体)
的体积=底面积×高
平面图形
名称 符号 周长C 和面积S
正方形 a —边长 C =4a
S =a2
长方形 a 和b -边长 C =2(a+b)
S =ab
三角形 a,b,c -三边长
h -a 边上的高
s -周长的一半
A,B,C -内角
其中s =(a+b+c)/2 S =ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
四边形 d,D -对角线长
α-对角线夹角 S =dD/2·sinα
平行四边形 a,b -边长
h -a 边的高
α-两边夹角 S =ah
=absinα
菱形 a -边长
α-夹角
D -长对角线长
d -短对角线长 S =Dd/2
=a2sinα
梯形 a 和b -上、下底长
h -高
m -中位线长 S =(a+b)h/2
=mh
圆 r -半径
d -直径 C =πd=2πr
S =πr2
=πd2/4
扇形 r —扇形半径
a —圆心角度数
C =2r +2πr×(a/360)
S =πr2×(a/360)
弓形 l -弧长
b -弦长
h -矢高
r -半径
α-圆心角的度数 S =r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/2·[r2-(b/2)2]1/2
=r(l-b)/2 + bh/2
≈2bh/3
圆环 R -外圆半径
r -内圆半径
D -外圆直径
d -内圆直径 S =π(R2-r2)
=π(D2-d2)/4
椭圆 D -长轴
d -短轴 S =πDd/4
名称 符号 面积S 和体积V
正方体 a -边长 S =6a2
V =a3
长方体 a -长
b -宽
c -高 S =2(ab+ac+bc)
V =abc
棱柱 S -底面积
h -高 V =Sh
棱锥 S -底面积
h -高 V =Sh/3
棱台 S1和S2-上、下底面积
h -高 V =h[S1+S2+(S1S1)1/2]/3
拟柱体 S1-上底面积
S2-下底面积
S0-中截面积
h -高 V =h(S1+S2+4S0)/6
圆柱 r -底半径
h -高
C —底面周长
S 底—底面积
S 侧—侧面积
S 表—表面积 C =2πr
S 底=πr2
S 侧=Ch
S 表=Ch+2S底
V =S 底h
=πr2h
空心圆柱 R -外圆半径
r -内圆半径
h -高 V =πh(R2-r2)
直圆锥 r -底半径
h -高 V =πr2h/3
圆台 r -上底半径
R -下底半径
h -高 V =πh(R2+Rr +r2)/3
d -直径 V =4/3πr3=πd2/6
球缺 h -球缺高
r -球半径
a -球缺底半径 V =πh(3a2+h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
球台 r1和r2-球台上、下底半径
h -高 V =πh[3(r12+r22)+h2]/6
圆环体 R -环体半径
D -环体直径
r -环体截面半径
d -环体截面直径 V =2π2Rr2
=π2Dd2/4
桶状体 D -桶腹直径
d -桶底直径
h -桶高 V =πh(2D2+d2)/12
(母线是圆弧形, 圆心是桶的中心)
V =πh(2D2+Dd +3d2/4)/15
(母线是抛物线形)
锥台体积公式
悬赏分:5 - 解决时间:2010-3-1 23:59
求一个碗口21CM 碗底13CM 高11CM 汤碗的容积 最好有演算步骤~~~谢谢了
提问者: shao5211112 - 一级
最佳答案
解:用圆锥体积相减得到锥台。(题目应是直径吧) 大圆锥高可由中轴面得比例关系得到:
13/21=h/(11+h) 得h=17.875
高=11+h=28.875
大圆锥体积=3.14*(21/2)^2*28.875/3=3332 小圆锥体积=3.14*(13/2)^2*17.875/3=790.5 汤碗的容积=3332-790.5=2541.
锥台体积公式
悬赏分:20 - 解决时间:2005-12-8 10:43
提问者: love_老公 - 二级
最佳答案
V=1/3*pai*(R^2+Rr+r^2)*h
推导过程:
S1=pai*r1^2
S2=pai*r2^2
H1-H2=h
R/(H2+h)=r/H2
H2=rh/(R-r)
H1=H2+h=Rh/(R-r)
V=1/3*pai*R^2*H1-1/3*pai*r^2*H2
=1/3*pai*R^2*Rh/(R-r)-1/3*pai*r^2*rh/(R-r) =1/3*pai*h*(R^3-r^3)/(R-r)
=1/3*pai*(R^2+Rr+r^2)*h
范文二:体积计算公式
常用体积及表面积计算公式
一些数学的体积和表面积计算公式3
立方图形
名称 符号 面积S 和体积V
正方体 a-边长 S=6a 2 V=a 3
长方体 a-长 b-宽 c-高 S=2(ab+ac+bc)
V =abc
棱柱 S-底面积 h-高 V=Sh
棱锥 S-底面积 h-高 V=Sh/3
棱台 S1和S 2-上、下底面积
h -高 V=h[S1+S2+(S1S 2) 1/2]/3
正棱台
拟柱体 S1-上底面积 S2-下底面积 S0-中截面积 h-高
V =h(S1+S2+4S0)/6
圆柱 r-底半径 h-高 C—底面周长 S底—底面积 S侧—侧面积 S 表—表面积 C=2πr
S 底=πr 2 S侧=Ch S表=Ch+2S底
V =S 底h =πr 2h
空心圆柱 R-外圆半径 r-内圆半径 h-高
V =πh(R2-r 2)
直圆锥 r-底半径 h-高
V =πr 2h/3
圆台 r-上底半径 R-下底半径 h-高
V =πh(R2+Rr +r 2)/3
球 r-半径 d-直径
V =4/3πr 3=πd2/6
球缺 h-球缺高 r-球半径 a-球缺底半径
V =πh(3a2+h2)/6 =πh 2(3r-h)/3
a 2=h(2r-h)
球台 r1和r 2-球台上、下底半径 h-高
V =πh[3(r12+r 22)+h2]/6
圆环体 R-环体半径 D-环体直径 r-环体截面半径 d-环体截面直径
V =2π2Rr 2 =π2Dd 2/4
桶状体 D-桶腹直径 d-桶底直径 h-桶高
V =πh(2D2+d 2)/12 (母线是圆弧形, 圆心是桶的中心)
V =πh(2D2+Dd +3d 2/4)/15 (母线是抛物
在
空
间
里
让
我
把
公
式
本
身
证
明
说
一
下,
我
都
不
记
得
有
这
回
事
了。
上
网
搜
索
之
后,
发
现
有
一
个
很
好
的
辛
氏
公
式
推
广,
贴
上
来。
贴子相关图片:
长方形的周长=(长+宽)×2
正方形的周长=边长×4
长方形的面积=长×宽
正方形的面积=边长×边长
三角形的面积=底×高÷2
平行四边形的面积=底×高
梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2
圆的周长=圆周率×直径=
圆周率×半径×2
圆的面积=圆周率×半径×半径
长方体的表面积=
(长×宽+长×高+宽×高)×2
长方体的体积 =长×宽×高
正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高
圆柱的表面积=上下底面面积+侧面积 圆柱的体积=底面积×高
圆锥的体积=底面积×高÷3
长方体(正方体、圆柱体)
的体积=底面积×高
平面图形
名称 符号 周长C 和面积S
正方形 a —边长 C =4a
S =a2
长方形 a 和b -边长 C =2(a+b) S =ab
三角形 a,b,c -三边长
h -a 边上的高
s -周长的一半
A,B,C -内角
其中s =(a+b+c)/2 S=ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
四边形 d,D -对角线长
α-对角线夹角 S =dD/2·sinα 平行四边形 a,b -边长
h -a 边的高
α-两边夹角 S =ah
=absinα
菱形 a -边长
α-夹角
D -长对角线长
d -短对角线长 S =Dd/2
=a2sinα
梯形 a 和b -上、下底长
h -高
m -中位线长 S =(a+b)h/2
=mh
圆 r -半径
d -直径 C =πd=2πr
S =πr2
=πd2/4
扇形 r —扇形半径
a —圆心角度数
C =2r +2πr×(a/360)
S =πr2×(a/360)
弓形 l -弧长
b -弦长
h -矢高
r -半径
α-圆心角的度数 S =r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2 =r(l-b)/2 + bh/2
≈2bh/3
圆环 R -外圆半径
r -内圆半径
D -外圆直径
d -内圆直径 S =π(R2-r2)
=π(D2-d2)/4
椭圆 D -长轴
d -短轴 S =πDd/4
立方图形
名称 符号 面积S 和体积V
正方体 a -边长 S =6a2
V =a3
长方体 a -长
b -宽
c -高 S =2(ab+ac+bc)
V =abc
棱柱 S -底面积
h -高 V =Sh
棱锥 S -底面积
h -高 V =Sh/3
棱台 S1和S2-上、下底面积
h -高 V =h[S1+S2+(S1S1)1/2]/3
拟柱体 S1-上底面积
S2-下底面积
S0-中截面积
h -高 V =h(S1+S2+4S0)/6
圆柱 r -底半径
h -高
C —底面周长
S 底—底面积
S 侧—侧面积
S 表—表面积 C =2πr
S 底=πr2
S 侧=Ch
S 表=Ch+2S底
V =S 底h
=πr2h
空心圆柱 R -外圆半径
r -内圆半径
h -高 V =πh(R2-r2)
直圆锥 r -底半径
h -高 V =πr2h/3
圆台 r -上底半径
R -下底半径
h -高 V =πh(R2+Rr +r2)/3
球 r -半径
d -直径 V =4/3πr3=πd2/6
球缺 h -球缺高
r -球半径
a -球缺底半径 V =πh(3a2+h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
球台 r1和r2-球台上、下底半径
h -高 V =πh[3(r12+r22)+h2]/6
圆环体 R -环体半径
D -环体直径
r -环体截面半径
d -环体截面直径 V =2π2Rr2
=π2Dd2/4
桶状体 D -桶腹直径
d -桶底直径
h -桶高 V =πh(2D2+d2)/12
(母线是圆弧形, 圆心是桶的中心)
V =πh(2D2+Dd +3d2/4)/15
(母线是抛物线形)
棱台体体积计算公式:
H 是高,S 上和S 下分别是上下底面的面积。
棱台体积 V=(上底面积+下底面积+4×中截面面积)÷6×高
V =(上口边长-0.025)(上口边宽-0.025) 杯深
=(下口边长+0.025)(下口边宽+0.025)杯深
V=(h/3)(a2+ab+b2)﹝其中a ,b ,h 分別为正四棱台的上、下底边及高的大小)
棱台体积:V=〔S1+S2+开根号(S1*S2)〕/3*h
注:V :体积;S1:上表面积;S2:下表面积;h :高。
关于不等边长的四梭台的与手工计算偏差的原因
关于不等边长的四梭台的与手工计算偏差的原因
鲁班算量2006在计算独立基础时,发现所有的正四棱台计算正确,而计算有长边与短边的四棱台时,就不对了,量都偏大的原因:
独立基础体积正确的计算公式为:
四棱台计算公式为(s1+s2+sqr(s1*s2))*h/3,sqr(x)对x 求根
或
A*B*H+h/6*(AB+ab+(A+a)(B+b))其中A 、B 、H 分别为独立基础下部长方体的长、宽、高;a 、b 、h 分别为四棱台的长、宽、高,当然,A 与a 、B 与b 相对应。
用A*B*H+h/6*(AB+ab+(A+a)(B+b))是偏小
实际工作中,这两种公式都有人用,结果有时是不一样.
而使用鲁班算量计算结果偏大,计算不等边长的四梭台与计算公式算出结果不一样是因为我们预算中的四梭台计算公式是近似的计算方法,而鲁班用的是微积分算法,结果相差很小
另外鲁班的带马牙槎的构造柱计算结果也与实际算法有差别,其实我们算构造柱时是按如果有两边有马牙槎的为边长上加6cm 计算,鲁班算量考虑了层高的不同与马牙槎的高度位也考虑了(马牙槎在板底时正好为退时鲁班的计算结果就会小,但其实鲁班算的是实际的量)。
公式分类
公式分类 公式表达式
乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式 b2-4a=0 注:方程有相等的两实根
b2-4ac>0 注:方程有一个实根
b2-4ac<0>0>
三角函数公式
两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n 项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B 是边a 和边c 的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b )是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=π(R+r)l 球的表面积 S=4π*r2
圆柱侧面积 S=c*h=2π*h 圆锥侧面积 S=1/2*c*l=π*r*l
弧长公式 l=a*r a 是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*π*r2h
斜棱柱体积 V=S'L 注:其中,S' 是直截面面积, L 是侧棱长
柱体体积公式 V=s*h 圆柱体 V=π*r2h
声明:本资料由 大家论坛公务员考试专区http://bbs.topsage.com/index.asp?boardid=66 收集整理,转载请注明出自 http://bbs.topasge.com
更多公务员考试信息,考试真题,模拟题:http://bbs.topsage.com/index.asp?boardid=66 大家论坛,学习的天堂!
数列问题
1.关键提示:
一般而言,公务员考试中的数列问题仅限于数列的简单求和及其变化形式,一般难度不大。考生只要很好的掌握基本公式,尤其是要学会运用等差中项的相关知识解题。
2.核心公式:
(1)等差数列通项公式 = =
(2)等差数列求和公式 = + =
(3)等差数列中项公式,
当n 为奇数时,等差中项为1项即 , = ;
当n 为偶数时,等差中项为2项即 和 ,而 + = ;
(4)等比数列通项公式 = =
A .9 B .14 C .15 D .16
解析:显然可将此题转化为一个等差数列的问题。每道题的分值组成了一个公差d=2的等差数列 ,显然 =100,可利用等差数列的求和公式 = + 求出 ,显然代入后可求 =1,然后根据等差数列的通项公式 = 求出 =15。 注:此题亦可通过求等差中项的方法解,即等差数列 ,当n=10时其等差中项的和为 + =100÷5=20,公差d=2,所以 =9, =11,所以 =15。
例题2:一种挥发性药水,原来有一整瓶,第二天挥发后变为原来的1/2;第三天变为第二天的2/3;第四天变为第三天的3/4,请问第几天时药水还剩下1/30瓶?( )
A .5天 B .12天 C .30天 D .100天
解析:依据题意,显然可将此题变为一个有规律的数列,即第1天剩下1,第2天剩下1/2,第3天剩下1/3,依此下去,第30天就剩下1/30。
所以,答案为C 。
例题3:2004年江苏A 类真题
如果某一年的7月份有5个星期四,它们的日期之和为80,那么这个月的3日是星期几?
A .一 B .三 C .五 D .日
解析:设这5天分别为 , , , , ,显然这是一个公差为7的等差数列。等差中项 = =16。所以,则 =2即第一个星期四为2号,则3号为星期五。
所以,答案为C 。
平面图形
名称 符号 周长C 和面积S
正方形 a —边长 C =4a
S =a2
长方形 a 和b -边长 C =2(a+b)
S =ab
三角形 a,b,c -三边长
h -a 边上的高
s -周长的一半
A,B,C -内角
其中s =(a+b+c)/2 S =ah/2
=ab/2?sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
四边形 d,D -对角线长
α-对角线夹角 S =dD/2?sinα
平行四边形 a,b -边长
h -a 边的高
α-两边夹角 S =ah
=absinα
菱形 a -边长
α-夹角
D -长对角线长
d -短对角线长 S =Dd/2
=a2sinα
梯形 a 和b -上、下底长
h -高
m -中位线长 S =(a+b)h/2
=mh
圆 r -半径
d -直径 C =πd=2πr
S =πr2
=πd2/4
扇形 r —扇形半径
a —圆心角度数 C =2r +2πr×(a/360)
弓形 l -弧长
b -弦长
h -矢高
r -半径
α-圆心角的度数 S =r2/2?(πα/180-sinα)
=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/2?[r2-(b/2)2]1/2
=r(l-b)/2 + bh/2
≈2bh/3
圆环 R -外圆半径
r -内圆半径
D -外圆直径
d -内圆直径 S =π(R2-r2)
=π(D2-d2)/4
椭圆 D -长轴
d -短轴 S =πDd/4
立方图形
名称 符号 面积S 和体积V
正方体 a -边长 S =6a2
V =a3
长方体 a -长
b -宽
c -高 S =2(ab+ac+bc)
V =abc
棱柱 S -底面积
h -高 V =Sh
棱锥 S -底面积
h -高 V =Sh/3
棱台 S1和S2-上、下底面积
h -高 V =h[S1+S2+(S1S1)1/2]/3
拟柱体 S1-上底面积
S2-下底面积
S0-中截面积
h -高 V =h(S1+S2+4S0)/6
圆柱 r -底半径
h -高
C —底面周长
S 底—底面积
S 侧—侧面积
S 表—表面积 C =2πr
S 底=πr2
S 侧=Ch
S 表=Ch+2S底
V =S 底h
=πr2h
空心圆柱 R -外圆半径
r -内圆半径
h -高 V =πh(R2-r2)
直圆锥 r -底半径
h -高 V =πr2h/3
圆台 r -上底半径
h -高 V =πh(R2+Rr +r2)/3
球 r -半径
d -直径 V =4/3πr3=πd2/6
球缺 h -球缺高
r -球半径
a -球缺底半径 V =πh(3a2+h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
球台 r1和r2-球台上、下底半径
h -高 V =πh[3(r12+r22)+h2]/6
圆环体 R -环体半径
D -环体直径
r -环体截面半径
d -环体截面直径 V =2π2Rr2
=π2Dd2/4
桶状体 D -桶腹直径
d -桶底直径
h -桶高 V =πh(2D2+d2)/12
(母线是圆弧形, 圆心是桶的中心)
V =πh(2D2+Dd +3d2/4)/15
(母线是抛物线形)
计算人体表面积的公式较多,但大多数可写成(1)或(2)的形式。
SA=cHα1Wα2
(1)
这里SA 为人体表面积(m2);H 为身高(cm);W 为体重(kg);c 、α1、α2为常数项。等式两边取自然对数,可将(1)式线性化为:
lnSA=α0+α1lnH+α2lnW
(2)
其中α0=lnc,ln 为自然对数符号。
1916年由DuBois 等直接测得9名观察者的身高、体重和体表面积,采用最小变异系数法,建立了第1个公认的人体表面积计算公式(1),目前仍被广泛应用。1975年Gehan 和George 利用Boyd 等直接测量的401例身高、体重和体表面积,应用最小二乘法拟合了
(2)式〔1〕。1987年Mosteller 按(1)式给出了容易记忆的简单公式(c=1/60)〔2〕。1973年Stevenson 根据10例实测数据,提出了由身高与体重推算表面积的二元一次线性公式〔3〕,80年代赵松山等〔4,5〕分别报道了中国成年男女的计算公式。国内大多数教科书介绍的计算公式是:
SA= 0.035W+0.1 (W≤30)
1.05+(W-30)×0.02 (W>30)
几何体的表面积体积计算公式
圆柱体:
圆锥体:
表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h 为其高, 平面图形
名称 符号 周长C 和面积S
正方形 a—边长 C=4a S=a2
长方形 a和b -边长 C=2(a+b) S=ab
三角形 a,b,c-三边长h -a 边上的高s -周长的一半A,B,C -内角其中
s =(a+b+c)/2 S=ah/2=ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)
四边形 d,D-对角线长α-对角线夹角 S=dD/2·sin α
平行四边形 a,b-边长h -a 边的高α-两边夹角 S=ah =absin α
菱形 a-边长α-夹角D -长对角线长d -短对角线长 S=Dd/2=a2sin α
梯形 a和b -上、下底长h -高m -中位线长 S=(a+b)h/2=mh
圆 r-半径 d-直径 C=πd =2πr S=πr2=πd2/4
扇形 r—扇形半径 a—圆心角度数 C=2r +2πr ×(a/360) S=πr2×(a/360)
弓形 l-弧长 S=r2/2·(πα/180-sinα)
b-弦长 =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
h-矢高 =παr2/360 - b/2·[r2-(b/2)2]1/2
r-半径 =r(l-b)/2 + bh/2
α-圆心角的度数 ≈2bh/3
圆环 R-外圆半径 S=π(R2-r2)
r-内圆半径 =π(D2-d2)/4
D-外圆直径
d-内圆直径
椭圆 D-长轴 S=πDd/4
d-短轴
范文三:体积计算公式
扇形面积计算公式:1/2×弧长×半径,与三角形面积:1/2×底×高相似
长方形的周长=(长+ 宽)×2
正方形的周长=边长×4
长方形的面积=长×宽
正方形的面积=边长×边长
三角形的面积=底×高÷2
平行四边形的面积=底×高
梯形的面积=(上底 +下底)×高÷2
直径=半径×2 半径=直径÷2
圆的周长=圆周率×直径=
圆周率×半径×2
圆的面积=圆周率×半径×半径
长方体的表面积=
(长×宽 长×高+宽×高)×2
长方体的体积 =长×宽×高
正方体的表面积=棱长×棱长×6
正方体的体积=棱长×棱长×棱长
圆柱的侧面积=底面圆的周长×高
圆柱的表面积=上下底面面积 侧面积
圆柱的体积=底面积×高
圆锥的体积=底面积×高÷3
长方体(正方体、圆柱体)
的体积=底面积×高
平面图形
名称 符号 周长C和面积S
正方形 a—边长 C=4a
S=a2
长方形 a和b-边长 C=2(a b)
S=ab
三角形 a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-内角
其中s=(a b c)/2 S=ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
四边形 d,D-对角线长
α-对角线夹角 S=dD/2·sinα
平行四边形 a,b-边长
h-a边的高
α-两边夹角 S=ah
=absinα
菱形 a-边长
α-夹角
D-长对角线长
d-短对角线长 S=Dd/2
=a2sinα
梯形 a和b-上、下底长
h-高
m-中位线长 S=(a b)h/2
=mh
圆 r-半径
d-直径 C=πd=2πr
S=πr2
=πd2/4
扇形 r—扇形半径
a—圆心角度数
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形 l-弧长
b-弦长
h-矢高
r-半径
α-圆心角的度数 S=r2/2·(πα/180-sinα)
=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/2·[r2-(b/2)2]1/2
=r(l-b)/2 bh/2
≈2bh/3
圆环 R-外圆半径
r-内圆半径
D-外圆直径
d-内圆直径 S=π(R2-r2)
=π(D2-d2)/4
椭圆 D-长轴
d-短轴 S=πDd/4
立方图形
名称 符号 面积S和体积V
正方体 a-边长 S=6a2
V=a3
长方体 a-长
b-宽
c-高 S=2(ab ac bc)
V=abc
棱柱 S-底面积
h-高 V=Sh
棱锥 S-底面积
h-高 V=Sh/3
棱台 S1和S2-上、下底面积
h-高 V=h[S1 S2 (S1S1)1/2]/3
拟柱体 S1-上底面积
S2-下底面积
S0-中截面积
h-高 V=h(S1 S2 4S0)/6
圆柱 r-底半径
h-高
C—底面周长
S底—底面积
S侧—侧面积
S表—表面积 C=2πr
S底=πr2
S侧=Ch
S表=Ch 2S底
V=S底h
=πr2h
空心圆柱 R-外圆半径
r-内圆半径
h-高 V=πh(R2-r2)
直圆锥 r-底半径
h-高 V=πr2h/3
圆台 r-上底半径
R-下底半径
h-高 V=πh(R2+Rr+r2)/3
球 r-半径
d-直径 V=4/3πr3=πd2/6
球缺 h-球缺高
r-球半径
a-球缺底
半径 V=πh(3a2 h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
球台 r1和r2-球台上、下底半径
h-高 V=πh[3(r12+r22) h2]/6
圆环体 R-环体半径
D-环体直径
r-环体截面半径
d-环体截面直径 V=2π2Rr2
=π2Dd2/4
桶状体 D-桶腹直径
d-桶底直径
h-桶高 V=πh(2D2+d2)/12
(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
(母线是抛物线形)
棱台体积:V=〔S1+S2+开根号(S1*S2)〕/3*h
注:V:体积;S1:上表面积;S2:下表面积;h:高。
------
几何体的表面积计算公式
圆柱体:
表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高) 圆锥体:
表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其高, 平面图形
名称 符号 周长C和面积S
正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中
s=(a+b+c)/2 S=ah/2=ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA) 四边形 d,D-对角线长α-对角线夹角 S=dD/2·sinα 平行四边形 a,b-边长h-a边的高α-两边夹角 S=ah=absinα 菱形 a-边长α-夹角D-长对角线长d-短对角线长 S=Dd/2=a2sinα 梯形 a和b-上、下底长h-高m-中位线长 S=(a+b)h/2=mh 圆 r-半径 d-直径 C=πd=2πr S=πr2=πd2/4 扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形 l-弧长 S=r2/2·(πα/180-sinα)
b-弦长 =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
h-矢高 =παr2/360 - b/2·[r2-(b/2)2]1/2
r-半径 =r(l-b)/2 + bh/2
α-圆心角的度数 ≈2bh/3 圆环 R-外圆半径 S=π(R2-r2)
r-内圆半径 =π(D2-d2)/4
D-外圆直径
d-内圆直径 椭圆 D-长轴 S=πDd/4
d-短轴
椭圆的周长计算公式:(长半轴+短半轴)*π*2
范文四:体积计算公式
原理简介
圆柱体的体积公式:体积=底面积×高 ,如果用h代表圆柱体的高,则圆柱=S底×h
详细内容
长方体的体积公式:体积=长×宽×高(底面积乘以高 S底·h)
如果用a、b、c分别表示长方体的长、宽、高则
长方体体积公式为:V长=abc
正方体的体积公式:体积=棱长×棱长×棱长.(底面积乘以高 S底·h)
如果用a表示正方体的棱长,则
正方体的体积公式为V正=a·a·a=a³
锥体的体积=底面面积×高÷3 V 圆锥=S底×h÷3分之一 台体体积公式:V=[ S上+√(S上S下)+S下]h÷3
圆台体积公式:V=[S+S′+√(SS′)]h÷3=πh(R2+Rr+r2)/3
球缺体积公式=πh²(3R-h)÷3
球体积公式:V=4πR³/3
棱柱体积公式:V=S底面×h=S直截面×l (l为侧棱长,h为高)
棱台体积:V=[S1+S2+开根号(S1*S2)]h/3
注:V:体积;S1:上表面积;S2:下表面积;h:高。
------
几何体的表面积计算公式
圆柱体:
表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高)圆锥体:
表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其高, 平面图形
名称 符号 周长C和面积S
正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中
s=(a+b+c)/2 S=ah/2=ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA) 四边形 d,D-对角线长α-对角线夹角 S=dD/2·sinα 平行四边形 a,b-边长h-a边的高α-两边夹角 S=ah=absinα 菱形 a-边长α-夹角D-长对角线长d-短对角线长 S=Dd/2=a2sinα 梯形 a和b-上、下底长h-高m-中位线长 S=(a+b)h/2=mh 圆 r-半径 d-直径 C=πd=2πr S=πr2=πd2/4 扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形 l-弧长 S=r2/2·(πα/180-sinα)
b-弦长 =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
h-矢高 =παr2/360- b/2·[r2-(b/2)2]1/2
r-半径 =r(l-b)/2 + bh/2
α-圆心角的度数 ≈2bh/3 圆环 R-外圆半径 S=π(R2-r2)
r-内圆半径 =π(D2-d2)/4
D-外圆直径
d-内圆直径 椭圆 D-长轴 S=πDd/4
d-短轴
范文五:基础计算公式
一) 基础
1. 带形基础
(1)外墙基础体积=外墙基础中心线长度×基础断面面积
(2)内墙基础体积=内墙基础底净长度×基础断面面积+T形接头搭接体积
其中T 形接头搭接部分如图示。
V=V1+V2=(L 搭×b×H )+ L 搭〔bh1/2+2(B-b/2×h1/2×1/3)〕=L搭〔b×H+h1(2b+B/6)〕 式中:V ——内外墙T 形接头搭接部分的体积;
V1——长方形体积,如T 形接头搭接示意图上部所示,无梁式时V1=0;
V2——由两个三棱锥加半个长方形体积,如T 形接头搭接示意图下部所示,无梁式时V= V2 ;
H ——长方体厚度,无梁式时H=0;
2. 独立基础( 砼独立基础与柱在基础上表面分界)
(1)矩形基础: V=长×宽×高
(2)阶梯形基础: V=∑各阶(长×宽×高)
(3)截头方锥形基础: V=V1+V2=H1/6×[A×B+(A+a)(B+b)+a×b ]+A×B×h2
截头方锥形基础图示
式中:V1——基础上部棱台部分的体积( m3 )
V2——基础下部矩形部分的体积( m3 )
A ,B ——棱台下底两边或V2矩形部分的两边边长(m )
a,b ——棱台上底两边边长(m )
h1——棱台部分的高(m )
h2——基座底部矩形部分的高(m )
(4)杯形基础
基础杯颈部分体积( m3 ) V3=abh3
式中:h3——杯颈高度
V3_——杯口槽体积( m3 )
V4= h4/6+[A×B+(A+a)(B+b)+a×b ]
式中:h4—杯口槽深度(m )。
杯形基础体积如图7—6所示:
V=V1+V2+V3-V4
式中:V1,V2,V3,V4为以上计算公式所得。
3. 满堂基础(筏形基础)
有梁式满堂基础体积=(基础板面积×板厚)+(梁截面面积× 梁长)
无梁式满堂基础体积=底板长×底板宽×板厚
4. 箱形基础
箱形基础体积=顶板体积+底板体积+墙体体积
5. 砼基础垫层
基础垫层工程量=垫层长度×垫层宽度×垫层厚度
(二)柱
1. 一般柱计算公式:V=HF
式中:V ——柱体积;
H ——柱高(m )
F ——柱截面积
2. 带牛腿柱如图所示
V=(H × F )+牛腿体积 ×n=(h × F )+[(a ×b ×h1)+a × b V2 h2/2]n
=h ×F+a ×b ×(h1+h2/2)n
式中:h ——柱高(m );F ——柱截面积
a.b ——棱台上底两边边长;h1——棱台部分的高(m )
h2——基座底部矩形部分的高(m );n ——牛腿个数
3. 构造柱:V=H ×(A×B+0.03×b×n)
式中:H — 构造柱高(m ); A.B — 构造柱截面的长和宽
b — 构造柱与砖墙咬槎1/2宽度; n — 马牙槎边数
(三)梁
1. 一般梁的计算公式(梁头有现浇梁垫者,其体积并入梁内计算)
V=Lhb
式中:h — 梁高(m ); b — 梁宽; L — 梁长
2. 异形梁(L 、T 、十字型等梁)
V=LF
式中:L — 梁长; F — 异型梁截面积
3. 圈梁
圈梁体积V=圈梁长×圈梁高×圈梁宽
4. 基础梁
V=L×基础梁断面积
式中:V — 基础梁体积(m3); L — 基础梁长度(m )。
(四)板
1. 有梁板(肋形板、密肋板、井子楼板)
V=V主梁+V次梁+V板
式中:V ——梁、板体积总和( m3 )
V 主梁——主梁体积( m3 )
V 次梁——次梁体积( m3 )
V 板——楼盖板的体积( m3 )
2. 无梁板(直接用柱支撑的板)
V=V板+V柱帽
式中:V ——无梁板体积总和( m3 )
V 板——楼盖板的体积( m3 )
V 板帽——柱帽体积( m3 )
3. 平板(直接用墙支撑的板)
V=V板=板全长×板宽×板厚
式中:V —板体积( m3 )
(五)墙
现浇钢筋砼墙(间壁墙、电梯井壁、挡土墙,地下室墙)
V=LHd+墙垛及突出部分体积-门窗洞口及0.3㎡以外孔洞体积
式中: V ——现浇钢筋砼墙体积( m3 )
L ——墙的长度(m )
H ——墙高(m )
d ——墙厚(m) 。
四、混凝土工程量计算举例
例1、求某工程如图所示现浇砼条型基础工程量:
解(1)V 条=〔(16.00+9.00) ×2+(9.00-1.50)〕×〔1.50×0.30+(1.50+0.50)×0.15÷2+0.50×0.30〕 =57.50×0.75=43.125m3
(2)丁字角体积:
a :(0.50×0.50×0.15÷2)×2=0.038m3
b :(0.15×0.50÷2×0.50÷3)×2×2=0.0252m3
(3)V 总= 43.125+ 0.038+ 0.0252 =43.19m3
例2、求某工程如图所示10个现浇砼独立基础工程量:
解(1)V=1.60×1.60 ×0.3+(1.62+0.62+1.6×0.6) ×0.6÷3=0.768+0.776=1.544m3
(2) V 总=1.544×10=15.44m3
例3、如图所示,求现浇钢筋砼筒壳拱板工程量(计算中跨度板砼)
解:工程量=(R2- r2)a π /360×48.00= (8.763×8.763-8.613× 8.613)×105×0.008727×48.00=114.80m3
例4、如图所示,求现浇钢筋砼雨蓬工程量(雨蓬带反边)
解:(1)雨蓬工程量=(2.4+0.16) ×1.2+〔 (1.12+0.04) ×2+(2.4+0.08) 〕×0.4=4.99㎡
(2)墙内雨蓬过梁工程量=(2.4+0.25×2) ×0.4×0.24=0.28m3
. 常用计算公式
(一) 基础
1. 带形基础
(1)外墙基础体积=外墙基础中心线长度×基础断面面积
(2)内墙基础体积=内墙基础底净长度×基础断面面积+T形接头搭接体积
其中T 形接头搭接部分如图示。
V=V1+V2=(L 搭×b×H )+ L 搭〔bh1/2+2(B-b/2×h1/2×1/3)〕=L搭〔b×H+h1(2b+B/6)〕 式中:V ——内外墙T 形接头搭接部分的体积;
V1——长方形体积,如T 形接头搭接示意图上部所示,无梁式时V1=0;
V2——由两个三棱锥加半个长方形体积,如T 形接头搭接示意图下部所示,无梁式时V= V2 ;
H ——长方体厚度,无梁式时H=0;
2. 独立基础( 砼独立基础与柱在基础上表面分界)
(1)矩形基础: V=长×宽×高
(2)阶梯形基础: V=∑各阶(长×宽×高)
(3)截头方锥形基础: V=V1+V2=H1/6+[A×B+(A+a)(B+b)+a×b ]+A×B×h2
截头方锥形基础图示
式中:V1——基础上部棱台部分的体积( m3 )
V2——基础下部矩形部分的体积( m3 )
A ,B ——棱台下底两边或V2矩形部分的两边边长(m )
a,b ——棱台上底两边边长(m )
h1——棱台部分的高(m )
h2——基座底部矩形部分的高(m )
(4)杯形基础
基础杯颈部分体积( m3 ) V3=abh3
式中:h3——杯颈高度
V3_——杯口槽体积( m3 )
V4= h4/6+[A×B+(A+a)(B+b)+a×b ]
式中:h4—杯口槽深度(m )。
杯形基础体积如图7—6所示:
V=V1+V2+V3-V4
式中:V1,V2,V3,V4为以上计算公式所得。
3. 满堂基础(筏形基础)
有梁式满堂基础体积=(基础板面积×板厚)+(梁截面面积× 梁长)
无梁式满堂基础体积=底板长×底板宽×板厚
4. 箱形基础
箱形基础体积=顶板体积+底板体积+墙体体积
5. 砼基础垫层
基础垫层工程量=垫层长度×垫层宽度×垫层厚度
(二)柱
1. 一般柱计算公式:V=HF
式中:V ——柱体积;
H ——柱高(m )
F ——柱截面积
2. 带牛腿柱如图所示
V=(H × F )+牛腿体积 ×n=(h × F )+[(a ×b ×h1)+a × b V2 h2/2]n
=h ×F+a ×b ×(h1+h2/2)n
式中:h ——柱高(m );F ——柱截面积
a.b ——棱台上底两边边长;h1——棱台部分的高(m )
h2——基座底部矩形部分的高(m );n ——牛腿个数
3. 构造柱:V=H ×(A×B+0.03×b×n)
式中:H — 构造柱高(m ); A.B — 构造柱截面的长和宽
b — 构造柱与砖墙咬槎1/2宽度; n — 马牙槎边数
(三)梁
1. 一般梁的计算公式(梁头有现浇梁垫者,其体积并入梁内计算)
V=Lhb
式中:h — 梁高(m ); b — 梁宽; L — 梁长
2. 异形梁(L 、T 、十字型等梁)
V=LF
式中:L — 梁长; F — 异型梁截面积
3. 圈梁
圈梁体积V=圈梁长×圈梁高×圈梁宽
4. 基础梁
V=L×基础梁断面积
式中:V — 基础梁体积(m3); L — 基础梁长度(m )。
(四)板
1. 有梁板(肋形板、密肋板、井子楼板)
V=V主梁+V次梁+V板
式中:V ——梁、板体积总和( m3 )
V 主梁——主梁体积( m3 )
V 次梁——次梁体积( m3 )
V 板——楼盖板的体积( m3 )
2. 无梁板(直接用柱支撑的板)
V=V板+V柱帽
式中:V ——无梁板体积总和( m3 )
V 板——楼盖板的体积( m3 )
V 板帽——柱帽体积( m3 )
3. 平板(直接用墙支撑的板)
V=V板=板全长×板宽×板厚
式中:V —板体积( m3 )
(五)墙
现浇钢筋砼墙(间壁墙、电梯井壁、挡土墙,地下室墙)
V=LHd+墙垛及突出部分体积-门窗洞口及0.3㎡以外孔洞体积
式中: V ——现浇钢筋砼墙体积( m3 )
L ——墙的长度(m )
H ——墙高(m )
d ——墙厚(m) 。
四、混凝土工程量计算举例
例1、求某工程如图所示现浇砼条型基础工程量:
解(1)V 条=〔(16.00+9.00) ×2+(9.00-1.50)〕×〔1.50×0.30+(1.50+0.50)×0.15÷2+0.50×0.30〕 =57.50×0.75=43.125m3
(2)丁字角体积:
a :(0.50×0.50×0.15÷2)×2=0.038m3
b :(0.15×0.50÷2×0.50÷3)×2×2=0.0252m3
(3)V 总= 43.125+ 0.038+ 0.0252 =43.19m3
例2、求某工程如图所示10个现浇砼独立基础工程量:
解(1)V=1.60×1.60 ×0.3+(1.62+0.62+1.6×0.6) ×0.6÷3=0.768+0.776=1.544m3
(2) V 总=1.544×10=15.44m3
例3、如图所示,求现浇钢筋砼筒壳拱板工程量(计算中跨度板砼)
解:工程量=(R2- r2)a π /360×48.00= (8.763×8.763-8.613× 8.613)×105×0.008727×48.00=114.80m3
例4、如图所示,求现浇钢筋砼雨蓬工程量(雨蓬带反边)
解:(1)雨蓬工程量=(2.4+0.16) ×1.2+〔 (1.12+0.04) ×2+(2.4+0.08) 〕×0.4=4.99㎡
(2)墙内雨蓬过梁工程量=(2.4+0.25×2) ×0.4×0.24=0.28m3
基坑独立柱基础的四棱台的计算公式是什么?
就把四棱台看做两个四棱锥, 大的减小的
公式是
s=1/3[s1+(s1s2)^1/2+s2]
s1是上底的面积
s2是下底的面积
^1/2是开方
可是翻书的 好不容易弄上
设棱台的两底面积分别为A 与B ,高为h ,则其体积V 为: V=h[A+B+sqrt(AB)]/3 这里sqrt( )是对括号内的结果求算术平方根
V=(1/3)H (S 上+S 下+√[S上×S 下]) H 是高,S 上和S 下分别是上下底面的面积