2.3 平行线的性质
一、教材分析:
本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章 第3节 平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。
二、教学目标:
知识与技能:掌握平行线的性质,能应用性质解决相关问题。
数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。
三、教学重、难点:
重点:平行线的性质
难点:“性质1”的探究过程
四、教学方法:
“引导发现法”与“动像探索法”
五、教具、学具:
教具:多媒体课件
学具:三角板、量角器。
六、教学媒体:大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思:
1.播放一组幻灯片。内容:①火车行驶在铁轨上;②游泳池;③横格纸。
2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
学生活动:
思考回答。①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;
教师:首先肯定学生的回答,然后提出问题。
问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?
引出课题——平行线的性质。
(二)数形结合,探究性质
1.画图探究,归纳猜想
任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图)。
问题一:指出图中的同位角,并度量这些角,把结果填入下表:
第一组
第二组
第三组
第四组
同位角
∠1
∠5
角的度数
数量关系
学生活动:画图——度量——填表——猜想
结论: 两直线平行,同位角相等。
问题二:再画出一条截线d,看你的猜想结论是否仍然成立?
学生:探究、讨论,最后得出结论:仍然成立。
2.教师用《几何画板》课件验证猜想
3.性质1. 两条直线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
(三)引申思考,培养创新
问题三:请判断内错角、同旁内角各有什么关系?
学生活动:独立探究——小组讨论——成果展示。
教师活动:评价,引导学生说理。
因为a‖b 因为a‖b
所以∠1=∠2 所以∠1=∠2
又 ∠1=∠3 又 ∠1+∠4=180°
所以∠2=∠3 所以∠2+∠4=180°
语言叙述:
性质2 两条直线被第三条直线所截,内错角相等。
(两直线平行,内错角相等)
性质3 两条直线被第三条直线所截,同旁内角互补。
(两直线平行,同旁内角互补)
(四)实际应用,优势互补
1.(抢答)
(1)如图,平行线AB、CD被直线AE所截
①若∠1 = 110°,则∠2 = °。理由: 。
②若∠1 = 110°,则∠3 = °。理由: 。
③若∠1 = 110°,则∠4 = °。理由: 。
(2)如图,由AB‖CD,可得( )
(A)∠1=∠2 (B)∠2=∠3
(C)∠1=∠4 (D)∠3=∠4
(3)如图,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=( )
(A) 180°(B)270° (C)360° (D)540°
(4)谁问谁答:如图,直线a‖b,
如:∠1=54°时,∠2= .
学生提问,并找出回答问题的同学。
2.(讨论解答)
如图是一块梯形铁片的残余部分,量得∠A=100°,
∠B=115°,求梯形另外两角分别是多少度?
(五)概括存储(小结)
1.平行线的性质1、2、3;
2.用“运动”的观点观察数学问题;
3.用数形结合的方法来解决问题。
(六)作业 第69页 2、4、7.
八、教学反思:
①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣。
②学的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。
③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
初中数学教学案例的范文
2.3 平行线的性质 一、教材分析:本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章 第3节 平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。
二、教学目标:知识与技能:掌握平行线的性质,能应用性质解决相关问题。
数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。
三、教学重、难点:重点:平行线的性质 难点:“性质1”的探究过程 四、教学方法:“引导发现法”与“动像探索法” 五、教具、学具:教具:多媒体课件 学具:三角板、量角器。
六、教学媒体:大屏幕、实物投影 七、教学过程:(一)创设情境,设疑激思:1.播放一组幻灯片。
内容:①火车行驶在铁轨上;②游泳池;③横格纸。
2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?学生活动:思考回答。
①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;教师:首先肯定学生的回答,然后提出问题。
问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?引出课题——平行线的性质。
(二)数形结合,探究性质1.画图探究,归纳猜想 任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图)。
问题一:指出图中的同位角,并度量这些角,把结果填入下表:第一组 第二组 第三组 第四组 同位角 ∠1 ∠5 角的度数 数量关系 学生活动:画图——度量——填表——猜想 结论: 两直线平行,同位角相等。
问题二:再画出一条截线d,看你的猜想结论是否仍然成立?学生:探究、讨论,最后得出结论:仍然成立。
2.教师用《几何画板》课件验证猜想3.性质1. 两条直线被第三条直线所截,同位角相等。
(两直线平行,同位角相等) (三)引申思考,培养创新 问题三:请判断内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。
教师活动:评价,引导学生说理。
因为a‖b 因为a‖b 所以∠1=∠2 所以∠1=∠2 又 ∠1=∠3 又 ∠1+∠4=180° 所以∠2=∠3 所以∠2+∠4=180° 语言叙述: 性质2 两条直线被第三条直线所截,内错角相等。
(两直线平行,内错角相等) 性质3 两条直线被第三条直线所截,同旁内角互补。
(两直线平行,同旁内角互补) (四)实际应用,优势互补1.(抢答) (1)如图,平行线AB、CD被直线AE所截 ①若∠1 = 110°,则∠2 = °。
理由: 。
②若∠1 = 110°,则∠3 = °。
理由: 。
③若∠1 = 110°,则∠4 = °。
理由: 。
(2)如图,由AB‖CD,可得( ) (A)∠1=∠2 (B)∠2=∠3 (C)∠1=∠4 (D)∠3=∠4 (3)如图,AB‖CD‖EF, 那么∠BAC+∠ACE+∠CEF=( ) (A) 180°(B)270° (C)360° (D)540° (4)谁问谁答:如图,直线a‖b,如:∠1=54°时,∠2= . 学生提问,并找出回答问题的同学。
2.(讨论解答) 如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,求梯形另外两角分别是多少度?(五)概括存储(小结)1.平行线的性质1、2、3;2.用“运动”的观点观察数学问题;3.用数形结合的方法来解决问题。
(六)作业 第69页 2、4、7.八、教学反思:①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。
在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣。
②学的转变:学生的角色从学会转变为会学。
本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。
③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
初中数学教学反思案例
在我们走入新课程的这段时间,我对自己过去的教学思想和行为进行了反思,用新课程的理念,对曾经被视为经验的观点和做法进行了重新审视,现将在反思中得到的体会总结出来,以求与同行共勉。
一、教学中要转换角色,改变已有的教学行为 (1)新课程要求教师由传统的知识传授者转变为学生学习的组织者。
(2)教师应成为学生学习活动的引导者。
(3)教师应从“师道尊严”的架子中走出来,成为学生学习的参与者。
二、教学中要“用活”教材 三、教学中要尊重学生已有的知识与经验 教学反思,或称为“反思性教学”,是指教师在教学实践中,批判地考察自我的主体行为表现及其行为依据,通过观察、回顾、诊断、自我监控等方式,或给予肯定、支持与强化,或给予否定、思索与修正,将“学会教学”与“学会学习”结合起来,从而努力提升教学实践的合理性,提高教学效能的过程。
教学反思被认为是“教师专业发展和自我成长的核心因素”。
美国学者波斯纳认为,没有反思的经验是狭隘的经验,至多只能形成肤浅的知识。
只有经过反思,教师的经验方能上升到一定的高度,并对后继行为产生影响。
他提出了教师成长的公式:教师的成长=经验+反思。
那么,我们应如何在教学反思中学会教学呢? 自我提问 自我提问是指教师对自己的教学进行自我观察、自我监控、自我调节、自我评价后提出一系列的问题,以促进自身反思能力的提高。
这种方法适用于教学的全过程。
如设计教学方案时,可自我提问:“学生已有哪些生活经验和知识储备”,“怎样依据有关理论和学生实际设计易于为学生理解的教学方案”,“学生在接受新知识时会出现哪些情况”,“出现这些情况后如何处理”等。
备课时,尽管教师会预备好各种不同的学习方案,但在实际教学中,还是会遇到一些意想不到的问题,如学生不能按计划时间回答问题,师生之间、同学之间出现争议等。
这时,教师要根据学生的反馈信息,反思“为什么会出现这样的问题,我如何调整教学计划,采取怎样有效的策略与措施”,从而顺着学生的思路组织教学,确保教学过程沿着最佳的轨道运行。
教学后,教师可以这样自我提问:“我的教学是有效的吗”,“教学中是否出现了令自己惊喜的亮点环节,这个亮点环节产生的原因是什么”,“哪些方面还可以进一步改进”,“我从中学会了什么”等。
行动研究 行动研究是提高教师教育教学能力的有效途径。
如“合作讨论”是新课程倡导的重要的学习理念,然而,在实际教学中,我们看到的往往是一种“形式化”的讨论。
“如何使讨论有序又有效地展开”即是我们应该研究的问题。
问题确定以后,我们就可以围绕这一问题广泛地收集有关的文献资料,在此基础上提出假设,制定出解决这一问题的行动方案,展开研究活动,并根据研究的实际需要对研究方案作出必要的调整,最后撰写出研究报告。
这样,通过一系列的行动研究,不断反思,教师的教学能力和教学水平必将有很大的提高。
教学诊断 “课堂教学是一门遗憾的艺术”,而科学、有效的教学诊断可以帮助我们减少遗憾。
教师不妨从教学问题的研究入手,挖掘隐藏在其背后的教学理念方面的种种问题。
教师可以通过自我反省与小组“头脑风暴”的方法,收集各种教学“病历”,然后归类分析,找出典型“病历”,并对“病理”进行分析,重点讨论影响教学有效性的各种教学观念,最后提出解决问题的对策。
交流对话 教师间充分的对话交流,无论对群体的发展还是对个体的成长都是十分有益的。
如一位教师在教学“平均分”时,设计了学生熟悉的一些生活情境:分桃子、分鱼、分饼干、分苹果等。
在交流对话时有的教师提出,仅仅围绕“吃”展开教学似乎有局限,事实上,在生活中我们还有很多东西要进行分配,可以适当扩展教学设计面。
这样开放性的讨论能够促进教师更有效地进行反思,促进教师把实践经验上升为理论。
案例研究 在课堂教学案例研究中,教师首先要了解当前教学的大背景,在此基础上,通过阅读、课堂观察、调查和访谈等收集典型的教学案例,然后对案例作多角度、全方位的解读。
教师既可以对课堂教学行为作出技术分析,也可以围绕案例中体现的教学策略、教学理念进行研讨,还可以就其中涉及的教学理论问题进行阐释。
如一位教师在让学生进行分数应用题的综合训练时出了这样一道题:一套课桌椅的价格是48元,其中椅子的价格是课桌价格的5/7,椅子的价格是多少?学生在教师的启发引导下,用多种方法算出了椅子的价格为20元。
正当教师准备小结时,有学生提出椅子的价格可能是10元、5元……这时,教师不耐烦地用“别瞎猜”打断了学生的思路。
课后学生说,假如一张桌子配两张椅子或三四张椅子,那么,椅子的价格就不一定是20元了。
通过对这一典型案例的剖析以及对照案例检查自身的教学行为,教师们认识到,虽然我们天天都在喊“关注学生的发展”,但在课堂教学中我们却常常我行我素,很少考虑学生的需要,很少根据学生反馈的信息及时调整自己的教学。
观摩分析 “他山之石,可以攻玉”。
教师应多观摩其他教师的课,并与他们进行对话交流。
在观摩中,教师应分析其...
初中数学与传统文化结合案例分析范文
第一部分 前 言 数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
20世纪中叶以来,数学自身发生了巨大的变化,特别是与计算机的结合,使得数学在研究领域。
研究方式和应用范围等方面得到了空前的拓展。
数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,伺时为人们交流信息提供了一种有效、简捷的手段。
数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐的发展。
它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
一、基本理念 1、义务教育阶段的数学课程应突出体现基础性。
普及性和发展性,使数学教育面向全体学生,实现。
——人人学有价值的数学; ——人人都能获得必需的数学; ——不同的人在数学上得到不同的发展。
2、数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
3、学生的数学学习内容应当是规实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
由于学生所处的文化环境、家庭背景和自身思维方式的不同、学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
4、数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。
教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
5、评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。
对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平。
更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。
6、现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响、数学课程的设计与实施应重视运用现代信息技术、特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。
二、设计思路 (一)关于学段 为了体现义务教育阶段数学课程的整体性,(全日制义务教育数学课程标准(实验稿)》(以下简称《标准》)通盘考虑了九年的课程内容;同时,根据儿童发展的生理和心理特征,将九年的学习时间具体划分为三个学段。
第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。
(二)关于目标 根据《基础教育课程改革纲要(试行)》,结合数学教育的特点,《标准》明确了义务教育阶段数学课程的总目标,并从知识与技能、数学思考、解决问题、情感与态度等四个方面作出了进一步的阐述。
《标准》中不仅使用了“了解(认识)、理解、掌握、灵活运用”等刻画知识技能的目标动词,而且使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的过程性月标动词,从而更好地体现了(标准)对学生在数学思考、解决问题以及情感与态度等方面的要求。
知识技能目标 了解 (认识) 能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出来这一对象。
理解 能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。
掌握 能在理解的基础上,把对象运用到新的情境中。
灵活应用 能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。
过程性目标 经历(感受) 在特定的数学活动中,获得一些初步的经验。
体验(体会) 参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。
探索 主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其他对象的区别和联系。
(...
初中数学如何进行德育教学案例
新的课程标准把德育教育放在十分重要的地位。
新课程的培养目标指导我们,要使学生具有爱国主义、集体主义精神,热爱社会主义,继承社会主义民主法制意识,遵守国家法律和社会公德;逐步形成正确的世界观,人生观,价值观;具有社会主义责任感,努力为人民服务,要使学生成为有理想、有道德、有文化、有纪律的一代新人。
这充分说明了德育教育在整个教育教学中的重要地位,作为基础学科的数学肯定也必须重视德育教育。
那么怎样才能在数学教育教学中更好的渗透德育教育呢,我认为有下面的一些方法。
一、借助中国数学史,进行爱国主义教育爱祖国,是每个民族的灵魂。
爱社会主义祖国,是中国人最基本、也是最崇高的情感。
进行思想教育,爱国主义教育是小学数学最重要的任务之一。
我国有着灿烂的古代文化,当了解到我国古代劳动人民的创造,必然会激起学生的民族自豪感。
培养爱国主义思想和民族自尊心。
如在《有理数》这一章教学中向学生介绍中国是最早使用负数的国家,关于负数取得的成就比埃及、印度早六七百年,比欧洲则早了一千多年。
在几何教学中关于圆周率的计算,祖冲之是第一个算出圆周率到七位小数的人,比外国人早一千一百多年。
通过这些事例的介绍,让每个中学生懂得,我们的国家和民族,过去和现在在数学领域中都有过极大的贡献,让学生树立民族自尊心、自信心,培养他们的爱国主义感情。
以培养唯物主义的辩证法,形成科学世界观。
教学中,教师要利用矛盾转化的规律,把未知转化成已知来解决,如解方程(组)中的由“高次”向“低次”转化,“多元”向“一元”转化,分式方程整式化,无理方程有理化等,如果能恰当地运用对立统一、矛盾转化的观点,去分析问题、解决问题,既能渗透辩证唯物主义观点,又能使学生掌握处理数学问题的转化思想和技能,有助于提高教学质量。
二、借助教材,挖掘德育素材在中学数学教材中,蕴含着丰富的德育因素,教师不仅要善于把教材作为数学知识来传授,而且要善于把教材作为德育内容来渗透。
但教学时,不能不顾及教材的体系和特点,不顾学生的实际情况,牵强附会,生拉硬扯,而是要将德育内容与知识传授融为一体。
“随风潜入,育人无声,使学生在自然轻松的氛围中接受思想教育。
这就需要教师认真钻研教材,充分发掘教材中潜在的德育因素,把德育教育贯穿于对知识的分析中。
例如在教学方程及方程组的应用时,可以列出我国改革开放以来的一些数据让学生进行分析,这样一方面学生掌握了知识,另一发面也从中体会到我们国家取得的辉煌成就。
尤其通过我国古今数学成就的介绍,培养学生的爱国主义思想。
现行义务教育教材中,有多处涉及到我国古今数学成就的内容,我们要有意识地去挖掘,在讲授有关知识的同时,适当介绍数学史料,对学生进行爱国主义思想教育,并讲述了祖冲之在追求数学道路上的感人故事,这样既可以学生的民族自豪感,自尊心和自信心,从而转化为为祖国建设事业而刻苦学习的责任感和自觉性,另一方面也可以学生培养不畏艰难,艰苦奋斗,刻苦钻研的献身精神。
三、更新教育观念、改变学习方式教师在教学过程中,可以采取灵活多样的教学方法潜移默化的对学生进行德育教育,比如研究性学习,合作性学习等。
在数学学习中,有很多规律和性质都是引导学生进行讨论,探究而归纳总结出来的。
这样不但可以培养学生的各种能力,而且还可以培养他们团结合作的能力及创新探究等能力。
就教学方法而言,我们可以采取小组合作学习法,这种学习法共享一个观念:学生们一起学习,既要为别人的学习负责,又要为自己的学习负责,学生在既有利于自己又有利于他人前提下进行学习。
在这种情景中,学生会意识到个人目标与小组目标之间是相互依赖关系,只有在小组其他成员都成功的前提下,自己才能取得成功。
还可以让他们养成严肃看待他人学习成绩的习惯。
学会与人交流,尝受成功的乐趣。
探究性教学可以激发学生的学习兴趣,产生主动探求知识的欲望。
在探求知识的过程中体验知识的产生过程,有利于理解知识、掌握知识,增强主体意识和创新精神,发展思维能力和实践能力。
通过主动探究活动,可以让学生掌握方法,学会学习、学会合作,体验到求知的欢愉和成功的快乐,形成正确的态度和价值观,树立社会责任感,能为学生的终身发展奠定良好基础。
例如:在教学《直线平行的条件》一节时,教师可以让学生通过用直尺和三角尺画平行线的方法认识同位角、内错角、同旁内角。
通过用量角器亲手度量同位角的度数,从而得出平行线的判定方法1(同位角相等,两直线平行),并把语言转化为数学符号。
进而引导学生通过讨论、探究由同位角相等,两直线平行,得出平行线的判定方法2(内错角相等,两直线平行)和平行线的判定方法3(同旁内角互补,两直线平行)。
还可引导学生讨论:“如果内错角相等怎样得到同位角相等,同旁内角互补”等等,在这个转化过程中进一步培养学生的推理能力,按照说点儿理—说理—推理—符号说理等不同层次,分段安排,逐步让学生养成
如何进行初中数学概念的教学案例
数学教材多是直接给定概念,教师应遵循高中数学新课标的要求,加强概念的引入,引导学生经历从具体实例抽象出数学概念的过程。
合理设置情境,使学生积极参与教学,了解知识发生、发展的背景和过程,使学生感受到学习的乐趣,这样也能使学生加深对概念的记忆和理解。
引入形式可以多样化,如以数学史话引入、以实际问题引入、以实际问题引入等。
...
写毕业论文范文之有关如何提高农村初中数学教育
给你个提纲,你自己再扩充一下,就比较合适了 1.明白学好数学的意义,培养学习数学的兴趣(大概100——150字) 2.具体方法:多思、多想、多问、多练、多看、多用(需要结合初一课本的知识来举例说明)多思考书中概念多想想老师教的方法多问问不懂的问题和延伸的知识点多练习自己不熟悉的地方多阅读与数学有关的书籍在生活中多多运用数学(这些具体方法有的可以点到为止,有的要举例说明(大概300——350字,根据前面的字数决定) 3.初中数学和小学数学的很大区别在于模型法和抽象思维的运用,小学一般是计算和形象思维,初中主要是方程、函数、几何证明等等,因此最后可以用50字讲一下自己的心得体会,可以讲一下自己预习的情况,再做总结一般初中论文要求并没有那么高,希望你能在本次作业中取得成功!