范文一:用相位法测声速
用相位法测声速
【实验目的】
1、学习用相位法测量空气中的声速。
2、了解空气中的声速与温度的关系。
、提高声学、电磁学等不同类型仪器的综合使用能力。 3
4、了解换能器的原理及工作方式。
【实验仪器】
综合声速测定仪、综合声速测定仪信号源、双综示波器。
【实验原理】
1、 声波的波速
,测量声速一般的方法是在给定声音信号的频率情况下,测量声信号的波长,由 f
公式,计算出声速。 uuf,,
图 2 实验连线示意图
3、相位法测量声速的原理
图2为实验连线示意图,它由综合声速测试仪、信号源、和示波器组成。声速测试仪装置的支架上部装有游标尺,游标尺的刀口下部装有两只压电换能器。作为发射超声波用的
SS换能器固定在刀口的左端。另一只接收超声波用的换能器装在刀口的右端,可沿着游12
S标尺移动。两只换能器的相对位移可从游标尺上读得。使换能器发射超声波的正弦电压1
S信号由信号源供给。正弦电压信号的频率直接在信号源的数码管上显示出来。换能器把2接收到的超声波压转换成电压信号,用示波器观察。
XCH由信号源产生的一正弦波信号,一方面由“示波器”端钮将信号送入示波器的“(1
轴)”,另一方面由“换能器”端钮将信号送入综合测定仪的“”,再传送到“”,然后SS12送入示波器的“(轴)”。在示波器上将显示出两个频率相等、振动方向相互垂直、YCH2
位相差恒定的利萨如图形。由于两信号到达时间不同(或存在有波程差)而产生相位差。
L ,,,2,
相位差不同,利萨如图形也不同。即
XAt,,sin(),,11
YAt,,sin(),,22
合成后的方程为
22XYXY22 ,,,,,,,,,cos()sin()212122AAAA1212
这是一个稳定的椭圆利萨如图形。
当时 ,,,,021
22XYXY2 ,,,022AAAA1212
XY或 ,AA12
2,这是一直线方程。即两者相位相同或相位差为的整数倍时,合成为一条直线。
,k,,,当时 ,,,212
22XY ,,122AA12
S合成后的利萨如图形为正椭圆。可见利萨如图形随相位差的变化而改变。当连续移,增大2
LLSS与之间的距离时,利萨如图将从直线到椭圆再到直线变化,如图3所示。当改变12
2,一个波长时,即两信号的相位差改变时,图形就会重复出现同样斜率的直线。如图3所示。这样就可以测量出波长的长度。
图 3 不同相位差对应的利萨如图
【实验步骤】
1、按图2 所示接线,将换能器间距离调整到约50mm。信号源输出频率为,大约为f036000。 HZ
2、打开示波器电源,预热5分钟,待出现一条绿色的水平线。将开关置于“CH1”,显示X方向的正弦波形,然后将开关置于”CH2”,显示Y方向的波形。应使两者的幅度大致相等。幅度不应过大。
XY,3、将示波器的旋钮旋到位置,示波器出现“椭圆”图形。将图形调至中间。旋转声速测定仪上的手轮,看图形的变化规律,看是否是从左到右再从右到左变化。
4、将利萨如图形调成一条直线,并记住直线的位置。打开自动记录仪的电源开关,并清零。
5、转动声速测定仪上的手轮,逐步增大换能器间距,观察相应的李萨如图形,直到图形再回到开始的直线位置时,记录下记录仪上的读数,并记录信号源上的频率。
56、重复步骤。记录8组数据,填在相应的表内。
五、数据记录
序号 1 fH()Lmm()lLLmm,,()nnnn,4nZ,l ,()mmni41
2
3
4
5
6
7
8
六、数据处理
,,,,,,,1234,计算平均波长 , 4
42(),,,,i,i1波长绝对不确定度 ,, ,41,
8
平均频率 ff,,n,n1
82()ff,,n,n1频率绝对不确定度 ,,f81,计算平均声速 uf,,
,,,f22相对不确定度 ()()E,,uf,波长绝对不确定度 ,,uEu u
uuums,,,(/)波速的完整表示
范文二:[精彩]用相位法测声速
用相位法测声速
【实验目的】
1、学习用相位法测量空气中的声速。
2、了解空气中的声速与温度的关系。
3、提高声学、电磁学等不同类型仪器的综合使用能力。
4、了解换能器的原理及工作方式。
【实验仪器】
综合声速测定仪、综合声速测定仪信号源、双综示波器。
【实验原理】
1、 声波的波速
,测量声速一般的方法是在给定声音信号的频率情况下,测量声信号的波长,由f
公式,计算出声速。 uuf,,
图 2 实验连线示意图
3、相位法测量声速的原理
图2为实验连线示意图,它由综合声速测试仪、信号源、和示波器组成。声速测试仪装置的支架上部装有游标尺,游标尺的刀口下部装有两只压电换能器。作为发射超声波用的
SS换能器固定在刀口的左端。另一只接收超声波用的换能器装在刀口的右端,可沿着游12
S标尺移动。两只换能器的相对位移可从游标尺上读得。使换能器发射超声波的正弦电压1
S信号由信号源供给。正弦电压信号的频率直接在信号源的数码管上显示出来。换能器把2接收到的超声波压转换成电压信号,用示波器观察。
XCH由信号源产生的一正弦波信号,一方面由“示波器”端钮将信号送入示波器的“(1
轴)”,另一方面由“换能器”端钮将信号送入综合测定仪的“”,再传送到“”,然后SS12送入示波器的“(轴)”。在示波器上将显示出两个频率相等、振动方向相互垂直、YCH2
位相差恒定的利萨如图形。由于两信号到达时间不同(或存在有波程差)而产生相位差。
L ,,,2,
相位差不同,利萨如图形也不同。即
XAt,,sin(),,11
YAt,,sin(),,22
合成后的方程为
22XYXY22 ,,,,,,,,,cos()sin()212122AAAA1212
这是一个稳定的椭圆利萨如图形。
当时 ,,,,021
22XYXY2 ,,,022AAAA1212
XY或 ,AA12
2,这是一直线方程。即两者相位相同或相位差为的整数倍时,合成为一条直线。
,k,,,当时 ,,,212
22XY,,1 22AA12
合成后的利萨如图形为正椭圆。可见利萨如图形随相位差的变化而改变。当连续移S,增大2
LLSS与之间的距离时,利萨如图将从直线到椭圆再到直线变化,如图3所示。当改变12
2,一个波长时,即两信号的相位差改变时,图形就会重复出现同样斜率的直线。如图3所示。这样就可以测量出波长的长度。
图 3 不同相位差对应的利萨如图
【实验步骤】
1、按图2 所示接线,将换能器间距离调整到约50mm。信号源输出频率为,大约为f036000。 HZ
2、打开示波器电源,预热5分钟,待出现一条绿色的水平线。将开关置于“CH1”,显示X方向的正弦波形,然后将开关置于”CH2”,显示Y方向的波形。应使两者的幅度大致相等。幅度不应过大。
XY,3、将示波器的旋钮旋到位置,示波器出现“椭圆”图形。将图形调至中间。旋转声速测定仪上的手轮,看图形的变化规律,看是否是从左到右再从右到左变化。
4、将利萨如图形调成一条直线,并记住直线的位置。打开自动记录仪的电源开关,并清零。
5、转动声速测定仪上的手轮,逐步增大换能器间距,观察相应的李萨如图形,直到图形再回到开始的直线位置时,记录下记录仪上的读数,并记录信号源上的频率。
56、重复步骤。记录8组数据,填在相应的表内。 五、数据记录
序号 1fH() Lmm() lLLmm,,() nnnn,4nZ,l, ()mmni41
2
3
4
5
6
7
8
六、数据处理
,,,,,,,1234计算平均波长 ,,4
42(),,,,i,i1波长绝对不确定度 ,,,41,
8平均频率 ff,,n,n1
82()ff,,n,n1频率绝对不确定度 ,,f81,计算平均声速 uf,,
,,,f22相对不确定度 ()()E,,uf,波长绝对不确定度 ,,uEu u
uuums,,,(/)波速的完整表示
范文三:第四实验__用相位法测声速
第四实验__用相位法测声速
实验四 用相位法测声速
一、实验目的
1.、学习用相位法测量空气中的声速。
2.、了解空气中的声速与温度的关系。
3、提高声学、电磁学等不同类型仪器的综合使用能力。
4、了解换能器的原理及工作方式。
二、实验仪器
综合声速测定仪、综合声速测定仪信号源、双综示波器。
三、实验原理
测量f情况下,测量声信号的波长?,由公式v??f,计算出声速v。
相位法测量声速的原理。 由信号源产生的一正弦波信号,一方面由“示波器”端钮将信号送入示波器的“CH1(X轴)”,另一方面由“换能器”端钮将信号送入综合测定仪的“S1”,再传送到“S2”,然后送入示波器的“CH2(Y轴)”。在示波器上将显示出两个频率相等、振动方向相互垂直、位相差恒定的利萨如图形。由于两信号到达时间不同(或存在有波程差)而产生相位差。
??2?L
?
相位差不同,利萨如图形也不同。如
X?A1sin(?t??)
Y?A2sin(?t??)
两者相位相同或相位差为2?的整数倍,合成为一条直线。如果两者相位差为的奇数倍,即
X?A1sin(?t???) 2
Y?A2sin(?t??) ?2?
合成后的利萨如图形为椭圆。可见利萨如图形随相位差的变化而改变。当连续移S2,以增大S1与S2之间的距离时L,利萨如图从直线到椭圆再到直线变化,如图2所示。当L改变一个波长时,两信号的相位差改变2?,图形就重复变化。这样就可以测量出波长的长度。
四、实验步骤
1、按图1接线,将换能器间距离调整到约50mm。信号源输出频率为f0,大约为36000HZ。
2、打开示波器电源,预热5分钟,待出现一条绿色的水平线。将开关置于“CH1”,显示X方向的正弦波形,然后将开关置于”CH2”,显示Y方向的波形。应使两者的幅度大致相等。幅度不应过大。
3、将示波器的旋钮旋到X?Y位置,示波器出现“椭圆”图形。将图形调至中间。旋转声速测定仪上的手轮,看图形的变化规律,看是否是从左到右再从右到左变化。
4、将利萨如图形调成一条直线,并记住直线的位置。打开自动记录仪的电源开关,并清零。
5、转动声速测定仪上的手轮,逐步增大换能器间距,观察相应的李萨如图形,直到图形再回到开始的直线位置时,记录下记录仪上的读数,
记录信号源上的频率。
6、重复步骤5。记录8组数据,填在相应的表内。
五、数据记录
六、数据处理
计算平均波长 ??1??2??3??4
4
波长绝对误差 ???
8 平均频率 ??fn
n?1
频率绝对误差 ?f?
计算平均声速 ? 相对误差 Ev?绝对误差 ?v?E vv
v???v(m/s)
实验十 超声声速的测定
[实验目的]
1(了解超声波的发射和接收及换能器的原理和功能。
2(理解掌握用共振干涉法、相位比较法和时差法测声速的原理和技术。
3(进一步熟悉示波器和信号源的使用方法。
4(学会用逐差法处理数据。
[实验器材]
1(SV-DH-7A型声速测定仪,可用于气体、液体和固体中的声速测定。
SVX-7声速测定仪信号源(频率50Hz-50KHz,带时差法测量脉冲信号源)。
2(双踪示波器
3(固体介质棒材等。
[仪器描述]
SV-DH-7A型声速测试仪是由声速测试器信号源和声速测试架二个部分组成,见图10-1和图10-2。
图10-1 SVX-7声速测试仪信号源面板
图10-2 声速测试架外形示意图
信号源调节旋钮的作用:
信号频率:用于调节输出信号的频率
发射强度:用于调节输出信号、电功率(输出电压)
接收增益:用于调节仪器内部的接收增益。
将声速测试架、信号源和双踪示波器按图10-7连接即可进行实验。
[实验原理]
1(超声波与压电陶瓷换能器
频率20Hz-20kHz的机械振动在弹性介质中传播形成声波,高于20kHz称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射等优点,声速实验所采用的声波频率一般都在20,60kHz之间。在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳。
压电陶瓷换能器根据它的工作方式,分为纵
向(振动)换能器、径向(振动)换能器及弯曲
振动换能器。声速教学实验中所用的大多数采用
纵向换能器。图3为纵向换能器的结构简图。
2(共振干涉法(驻波法)测量声速
假设在无限声场中,仅有一个点声源S1(发
射换能器)和一个接收平面(接收换能器S2)。当 图10-3 纵向换能器的结构简图
点声源发出声波后,在此声场中只有一个反射面(即接收换能器平面),并且只产生一次反射。
在上述假设条件下,发射波y1=Acos(ωt+2πx /λ)。在S2处产生反射,反射波y2=A1cos(ωt+2πx /λ),信号相位与y1相反,幅度A1,A。y1与y2在反射平面相交叠加,合成波束y3
y3=y1+y2=(A1+A2)cos(ωt-2πx /λ)+A1cos(ωt+2πx /λ)
=A1cos(2πx /λ)cosωt+A2cos(ωt - 2πx /λ)
由此可见,合成后的波束y3在幅度上,具有随cos(2πx /λ)呈周期变化的特性,在相位上,具有随(2πx /λ)呈周期变化的特性。
图4所示波形显示了叠加后的声波幅度,随距离按cos(2πx /λ)变化的特征。
图
10-4 换能器间距与合成
幅度
发射换能器与接收换能器之间的距离实验装置按图7
所示,图中S1和S2为压电陶瓷换能器。S1作为声波发射器,它由信号源供给频率为数十千赫的交流电信号,由逆压电效应发出一平面超声波;
而S2则作为声波的接收器,压电效应将接收到的声压转换成电信号。将它输入示波器,我们就可看到一组由声压信号产生的正弦波形。由于S2在接收声波的同时还能反射一部分超声波,接收的声波、发射的声波振幅虽有差异,但二者周期相同且在同一线上沿相反方向传播,二者在S1和S2区域内产生了波的干涉,形成驻波。我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器S2处的振动情况。移动S2位置(即改变S1和S2之间的距离),你从示波器显示上会发现,当S2在某此位置时振幅有最小值。根据波的干涉理论可以知道:任何二相邻的振幅最大值的位置之间(或二相邻的振幅最小值的位置之间)的距离均为λ/ 2。为了测量声波的波长,可以在一边观察示波器上声压振幅值的同时,缓慢的改变S1和S2之间的距离。示波器上就可以看到声振动幅值不断地由最大变到最小再变到最大,二相邻的振幅最大之间的距离为λ/2;S2移动过的距离亦为λ/2。超声换能器S2至S1之间的距离的改变可通过转动鼓轮
来实现,而超声波的频率又可由声速测试仪信号源频率显示窗口直接读出。
图10-5 用李萨如图观察相位变化
在连续多次测量相隔半波长的S2的位置变化及声波频率f以后,我们可运用测量数据计算出声速,用逐差法处理测量的数据。
3(相位法测量原理
由前述可知入射波y1与反射波y2叠加,形成波束y3
即y3 =A1cos(2πx /λ)cosωt+A2cos(ωt - 2πx /λ)
即对于波束:y1 =Acos(ωt - 2πx /λ)
由此可见,在经过?x距离后,接收到的余弦波与原来位置处的相位差(相移)为θ= 2π ?x /λ。如图5所示。因此能通过示波器,用李萨如图法观察测出声波的波长。
4(时差法测量原理
连续波经脉冲调制后由发射换能器发射至被测介质中,声波在介质中传播,经过t时间后,到达L距离处的接收换能器。由运动定律可知,声波在介质中传播的速度可由以下公式求出:
速度v=距离L/时间t
图10-6 发射波与接收波
通过测量二换能器发射接收平面之间距离L和时间t ,就可以计算出当前介质下的声波传播速度。
[实验步骤]
图10-7 驻波法、相位法连线图
1(仪器在使用之前,加电开机预热15min。在接通市电后,自动工作在连续波方式,选择的介质为空气的初始状态。
2(驻波法测量声速。
(1)测量装置的连接
如图7所示,信号源面板上的发射端换能器接口(S1),用于输出一定频率的功率信号,请接至测试架的发射换能器(S1);信号源面板上的发射端的发射波形Y1,请接至双踪示波器的CH1(Y1),用于观察发射波形;接收换能器(S2)的输出接至示波器的CH2(Y2)
(2)测定压电陶瓷换能器的最佳工作点
只有当换能器S1的发射面和S2的接收面保持平行时才有较好的接收效果;为了得到较清晰的接收波形,应将外加的驱动信号频率调节到换能器S1、S2的谐振频率点处时,才能较好的进行声能与电能的相互转换(实际上有一个小的通频带),以得到较好的实验效果。按照调节到压电陶瓷换能器谐振点处的信号频率,估计一下示波器的扫描时基t/div,并进行调节,使在示波器上获得稳定波形。
超声换能器工作状态的调节方法如下:各仪器都正常工作以后,首先调节发射强度旋钮,使声速测试仪信号源输出合适的电压(8,10VP-P之间),再调整信号频率(在25,45kHz),选择合适的示波器通道增益(一般0.2V,1V/div之间的位置),观察频率调整时接收波的电压幅度变化,在某一频率点处(34.5,37.5kHz之间)电压幅度最大,此频率即是压电换能器S1、S2相匹配频率点,记录频率FN,改变S1和S2间的距离,适当选择位置,重新调整,再次测定工作频率,共测5次,取平均频率f。
(3)测量步骤
将测试方法设置到连续波方式,合适选择相应得测试介质。完成前述2.1、2.2步骤后,观察示波器,找到接收波形的最大值。然后转动距离调节鼓轮,这时波形的幅度会发生变化,记录下幅度为最大时的距离Li-1,距离由数显尺(数显尺原理说明见附录2)或在机械刻度上读出,再向前或者向后(必须是一个方向)移动距离,当接收波经变小
后再到最大时,记录下此时的距离Li。即有:波长λi=2?Li -Li-1?,多次测定用逐差法处理数据。
3(相位法/李萨如图法测量波长的步骤
将测试方法设置到连续波方式,合适选择相应的测试介质。完成前述2.1、2.2步骤后,将示波器打到“X-Y”方式,并选择合适的通道增益。转动距离调节鼓轮,观察波形为一定角度的斜线,记录下此时的距离Li-1;距离由数显尺(数显尺原理说明见附录
2)或机械刻度尺上读出,再向前或者向后(必须是一个方向)移动距离,使观察到的波形又回到前面所说的特定角度的斜线,记录下此时的距离Li。即有:波长λi=?Li -Li-1?
4(干涉法/相位法测量数据处理
已知波长λi和频率f i,(频率由声速测试仪信号源频率显示窗口直接读出。)则声速Ci=λi×f i。
因声速还与介质温度有关,所以必要时请记下介质温度t?。
5(时差法测量声速步骤
图10-8 时差法测量声速接线图
按图8所示进行接线。将测试方法设置到脉冲波方式,并选择相应的测试介质。将S1和S2之间的距离调到一定距离(大于50,80mm),再调节接收增益(一般取较小的幅度),使显示的时间差值读数稳定,此时仪器内置的计时器工作在最佳状态。然后记录此时的距离值和信号源计时器显示的时间值Li-1、ti-1。移动S2,如果计时器读数有跳字,则微调(距离增大时,顺时针调节;距离减小时,逆时针调节)接收增益,使计时器读数连续准确变化。记录下这时的距离值和显示的时间值Li、ti。则声速Ci=(Li-Li-1
)
/(ti-ti-1)。
当使用液体为介质测试声速时,先在测试槽中注入液体,直至把换能器完全浸没,但不能超过液面线。然后将信号源面板上的介质选择键切换至“液体”,即可进行测试,步骤相同。
6*(固体介质中的声速测量
在固体中传播的声波是很复杂的,它包括纵波、横波、扭转波、弯曲波、表面波等,而且各种声速都与固体棒的形状有关。金属棒一般为各向异性结晶体,沿任何方向可有三种波传播,只在特殊情况下为纵波。
固体介质中的声速测量需另配专用的SVG固体测量装置,用时差法进行测量。
实验提供两种测试介质:塑料棒和铝棒。每种材料有长、中、短三根样品,塑料棒的长度分别为160mm、120mm、80mm;金属棒的长度分别为180mm、130mm、80mm。对于每种材料的固体棒,只需测两根样品,即可按上面的方法算出声速:
Ci=(Li-Li-1)/(ti-ti-1)。
测量时,按图8接线。为了得到准确的测量结果,测量时需要在固体棒两端面上涂上适量的耦合剂,使其接触良好。
将接收增益调到适当位置(一般为最大位置),以计时器不跳字为好。介质选择为“固体”。将固体棒放在专用支架上,转动鼓轮,使两个换能器之间的距离能够放下固体棒,再转动鼓轮,使两换能器的端面与固体棒紧密接触并对准。
提示:金属棒的计时读数在33,55μs之间,塑料棒的计时读数在55,
110μs为正常值,跳字或者大于这个范围的一般是没有接触好。
[数据记录与处理]
1(自拟表格记录所有的实验数据,表格要便于用逐差法求相应位置的差值和计算λ。
2(以空气介质为例,计算出共振干涉法和相位法测得的波长平均值λ,及标准偏差Sλ,同时考虑仪器的示值读数误差为0.01mm。经计算可得波长的测量结果λ??λ。
3(按理论值公式Vs?V0T0,算出理论值VS。
式中V0=331.45m/s为T0=273.15K时的声速,T=(t+273.15)K。
或按经验公式V=(331.45+0.59t)m/s,计算V。t为介质温度(?)。
4(计算出通过二种方法测量的V以及?V值,其中?V=V-VS。
将实验结果与理论值比较,计算百分比误差。分析误差产生的原因。可写为在室温
为 ?时,用共振干涉法(相位法)测得超声波在空气中的传播速度为V= ? m/s,???VVS,
5(列表记录用时差法测量塑料棒及金属棒的实验数据。
(1)三根相同材质,但不同长度待测棒的长度。
(2)每根测试棒所测得相对应的时间。
(3)用逐差法求相应的差值,然后计算出声速,并与理论声速传播测量参数进行比较,并
计算百分误差。
6(声速测量值与公认值比较
(1)空气中声速,按理论值公式Vs?V0T
T0,求得VS。
式中V0=331.45m/s为T0=273.15K时的声速,T=(t+273.15)K。
或按经验公式V=(331.45+0.59t)m/s,计算V。t为介质温度(?)。
(2)液体中的声速
(3)固体中的纵波声速:
铝:C棒=5150m/s, C块=6300m/s
铜:C棒=3700m/s, C块=5000m/s
钢:C棒=5050m/s, C块=6100m/s
玻 璃:C棒=5200m/s, C块=5600m/s
硬塑料:C棒=1500,2200m/s, C块=2000,2600m/s
注:以上数据仅供参考。由于介质的材料成分和温度的不同,实际测得的声速范围可
能会较大。
[注意事项]
1(使用时,应避免声速测试仪信号源的功率输出端短路。
2(在液体(水)作为传播介质测量时,应避免液体接触到其他金属件,以免金属物件被腐蚀。每次使用完毕后,用干燥清洁的抹布将测试架及螺杆清洁干净。
3(严禁将液体(水)滴到数显尺杆和数显表头内,如果不慎将液体(水)滴到数显尺杆和数显表头上,请用60?以下的温度将其烘干,即可使用。
4(声速信号源在开机或受到外部强磁场干扰时,有时会产生死机。此时请按后面板左侧复位按钮键,进行复位。
5(SV-DH-5、SV-DH-5A,SV-DH-7、SV-DH-7A型测试架体带有有机玻璃,容易破碎,使用时应谨慎,以防止发生意外。
6(数显尺电池使用寿命为6至8个月,过了使用期后请更换电池。
7(仪器不使用时,应存放空气温度在0,35?的室内架子上;架子离地高度大于100mm;仪器应在清洁干净的场所使用,避免阳光直接暴晒和剧烈颠震。
8(本仪器的保修期为一年。
[思考题]
1(声速测量中共振干涉法、相位法、时差法有何异同,
2(为什么要在谐振频率条件下进行声速测量,如何调节和判断测量系统是否处于谐振
状态,
3(为什么发射换能器的发射面与接收换能器的接收面要保持互相平行,
4(声音在不同介质中传播有何区别,声速为什么会不同,
附录1 简析三种测试声速的方法
1(驻波法(共振干涉法)
由测试架上发射换能器发射出的声波经介质传播到接收换能器时,在接收换能器表面(是一个平面)产生反射。此时反射波与入射波在换能器表面叠加,叠加后的波形具有驻波特性。从声波理论可知,当二个声波幅
度相同,方向相反进行传播时,在它们的相交处进行声波干涉现象,出现驻波。而声强在波幅处最小,在波节处最大。所以调节接收换能器的位置,通过示波器看到的波形幅度也随位置的变化而出现起伏,因为是靠目测幅度的变化来知道它的波长,所以难以得到很精确的结果。特别是在液体中传播,由于声波在液体中衰减较小,发射出的声波在很多因素影响下产生多次反射叠加,在接收换能器表面已经是多个回波的叠加(混响),叠加后的波形的驻波特征较为复杂,并不是根据单纯的两束波叠加来观察它的幅度变化,来求出波长。因此用通常的两束波叠
加的公式来求速度,其精确性大为下降,导致测量结果不确定性的增大。通过在测试槽中的左、中、右三处进行测量,可以明确看出用通常的计算公式,在不同的地方计算得到的声速是不一样的。
2(相位比较法(李萨如图法)
声速在传播途中的各个点的相位是不同的,当发射点与接收点的距离变化时,二者的相位差也变化了。通过示波器用李萨如图法进行波长的测量。与驻波法相同的是都是目测波形的变化来求它的波长,同样测量结果存在着一定的不确定性。同样因为声波在液体中传播存在着多个回波的干涉影响,从而导致测量结果的不确定性的增大。
3(时差法
在实际工程中,时差法测量声速得到广泛的应用。时差法测试声速的基本原理是基于速度V=距离S/时间T,通过在已知的距离内计测声波传播的时间;从而计算出声波的传播速度,在一定的距离之间 由控制电路定时发出一个声脉冲波,经过一段距离的传播后到达接收换能器。接收到的
信号经放大,滤波后由高精度计时电路求出声波从发出到接收这个在介质传播中经过的时间,从而计算出在某一介质中的传播速度。只因为不用目测的方法,而由仪器本身来计测,所以其测量精度相对于前面两种方法要高。同样在液体中传播时,由于只检测首先到达的声波的时间,而与其它回波无关,这样回波的影响可以忽略不计,因此测量的结果较为准确,所以工程中往往采用时差法法来测量。
综上所述,通过分析三种测量方法,我们得出了用驻波法和相位法这两种方法测量声速,存在相对较大的测量误差,建议学生带着比对、加深印象目的使用这三种方法进行测量声速,并对三种方法的优点、缺点进行比较。若课时允许,建议学生对水中用相位法、驻波法测量误差的原因,从声传播过程中混响现象出发展开讨论和分析,进一步了解声波在不同介质当中传播的知识。
附录2 数显容栅尺说明
电容位移测量装置包括一个可相对于测量装置纵向移动的带状标尺(10),测量装置内有几组电极(22至25),通过线路(27)与电子装置连接。带尺由金属制成,上面具有许多等间隔的矩形窗孔(11)。带尺(10)与发射电极相对的接收电极(29)一起构成差动电容器,用来完成电容位移测量。
电容位移测量装置,包括一带状标尺和一测量装置,测量装置上有一系列的发射电极和含一个或多个接收电极的传感器,其位置可由差动电容传感器确定。把大测量极板分成数个小测量极板,这样由于转换功能的精度不够所造成的转换误差不会损害传感器
的精度。
因此,误差为千分之一的不精确度相当于一米测量极板有一毫米的误差。另一方面,如果测量极板是一毫米的标尺则其转换误差只有一微米。如补偿分度方面的误差,通过几个刻度同时进行测量比较有利。在此情况下,几个顺次排列的基本电容就构成单个的或差动的电容。
为此,该测量装置的标尺由导电带尺构成,其上有数个间隔相等的窗口,带尺通过测量极板时,这些窗口与几个由基本电容器组成的电极一起,构成差动电容。此电容可变,它是带尺与测量极板相对位置的函数。
由于这些特点,这样的标尺结构很简单,然而在测量精度方面有一些优异性能。另一个优点就是带尺可在其弹性极限内拉长,这就有可能调整其长短,该带尺还可以接地,因此它不需任何电的连接。
图1:标尺和测量装置的透视图
图2:沿标尺垂直方向的剖面图
图3:展示出发射电极的该测量装置的纵向剖面图
图4:展示出接收电极的剖面
图5:以示意图说明电极的排列图
图6:带介质零件的测量装置的剖面图
如图 1 和图 2 所示,该装置包括一个由金属带 10 构成的标尺和一个测量装置 20 。带尺 10上有间隔相等的矩形窗孔 11,相邻窗孔的中心轴线之间的距离设定
为 T,测量装置2。
带尺10安排在面21和28之间,发射电极的涂敷面(如图3所示)
包含2N整数倍的电机有,。在图中所示情况下2N=4。
在本例中,如电极22,23,24,25之间的距离为T,则T/2N为T/4。所以对带尺10窗孔中心轴线之间的距离值T,计数2N的话,即四个电极。在本例中各电极通过线27与电子装置连接,成为N个电极。从电的观点看,两个电极构成差动电容器极,另一级N个电极构成此差动电容器的第二电极。差动电容器的共用板是由接收电极29上位置与窗孔11相对应的部分构成(如图5所示)。
因此,测量装置20的电极一带尺10的窗孔11组成一系列的差动电容器,它们按顺序连接以形成一个差动电容器。差动电容的变化与带尺的位移成比例,如果带尺的移动超过了规定值,电气装置就把发送电极的供电窜过一个电极来。
从电的观点看,刻度变化的方式是由N个电极形成的极板以T/2N的极数来跟随带尺10的窗孔11的位移,在本例中即以T/4的级数,这样可给出近似测量结果。接收电极必须与发射电极系列一样或比发射电极系列还长。在此情况下,整排发射电极的长度必须等于距离T的整数倍。在这两种情况下,为避免边缘效应和外部干扰,最好用位于测量装置主体上的涂敷面29将接收电极29围绕起来(如图3和图4所示)。
为了不让杂质落到带尺10的窗孔11上并保护带尺,从机构和化学观点来看,可用图6所示之聚四氟乙烯制成。保护层不会影响这些装置的功能。
数显表头的使用方法及维护
1、inch/mm按钮为英/公制转换用,测量声速时用“mm”
2、“OFF”“ON”按钮为数显表头电源开关
3、“ZERO”按钮为表头数字回零用。
4、数显表头在标尺范围内,接收换能器处于任意位置都可设置“0”位。摇动丝杆,接收换能器移动的距离为数显表头显示的数字。
5、数显表头右下方有“?”处打开为更换表头内扣式电池处。
6、使用时,严禁将液体淋到数显表头上,如不慎将液体淋入,可用电吹风吹干(电吹风用低档,并保持一定距离使温度不超过60?)。
7、数显表头与数显杆尺的配合极其精确,应避免剧烈的冲击和重压。
8、仪器使用完毕后,应关掉数显表头的电源,以免不必要的消耗电池。
范文四:第四实验 用相位法测声速(DOC)
实验四 用相位法测声速
一、实验目的
1.、学习用相位法测量空气中的声速。
2.、了解空气中的声速与温度的关系。
3、提高声学、电磁学等不同类型仪器的综合使用能力。
4、了解换能器的原理及工作方式。
二、实验仪器
综合声速测定仪、综合声速测定仪信号源、双综示波器。
三、实验原理
测量声速一般的方法是在给定声音信号的频率情况下,测量f
,声信号的波长,由公式,计算出声速。 vvf,,
相位法测量声速的原理。 由信号源产生的一正弦波信号,一方面由“示波器”端钮将信号送入示波器的“CH1(X轴)”,另一方面由“换能器”端钮将信号送入综合测定仪的“S1”,再传送到“S2”,然后送入示波器的“CH2(Y轴)”。在示波器上将显示出两个频率相等、振动方向相互垂直、位相差恒定的利萨如图形。由于两信号到达时间不同(或存在有波程差)而产生相位差。
L,,,2 ,
相位差不同,利萨如图形也不同。如
XAt,,sin(),,1
YAt,,sin(),,2
2,两者相位相同或相位差为的整数倍,合成为一条直线。如果两者
,相位差为的奇数倍,即 2
, XAt,,,sin(),,12
YAt,,sin(),,2
合成后的利萨如图形为椭圆。可见利萨如图形随相位差的变化而改变。当连续移S2,以增大S1与S2之间的距离时L,利萨如图从直线到椭圆再到直线变化,如图2所示。当L改变一个波长时,两信号
2,的相位差改变,图形就重复变化。这样就可以测量出波长的长度。
四、实验步骤
1、按图1接线,将换能器间距离调整到约50mm。信号源输出频
f0率为,大约为36000。 HZ
2、打开示波器电源,预热5分钟,待出现一条绿色的水平线。将开关置于“CH1”,显示X方向的正弦波形,然后将开关置于”CH2”,显示Y方向的波形。应使两者的幅度大致相等。幅度不应过大。
XY,3、将示波器的旋钮旋到位置,示波器出现“椭圆”图形。将图形调至中间。旋转声速测定仪上的手轮,看图形的变化规律,看是否是从左到右再从右到左变化。
4、将利萨如图形调成一条直线,并记住直线的位置。打开自动记录仪的电源开关,并清零。
5、转动声速测定仪上的手轮,逐步增大换能器间距,观察相应的李萨如图形,直到图形再回到开始的直线位置时,记录下记录仪上的读数,记录信号源上的频率。
6、重复步骤5。记录8组数据,填在相应的表内。 五、数据记录
1 fH()Lmm()lLLmm,,()序号 nnnn,3nZ ,l,()mmni41 2
3 4
5 6
7 8
六、数据处理
,,,,,,,1234计算平均波长 ,,4
42(),,,,i,i1波长绝对误差 ,,,41,
8
平均频率 ff,,n,n1
82()ff,,n,n1频率绝对误差 ,,f81,
计算平均声速 vf,,
,,,f22相对误差 ()()E,,vf,
绝对误差 ,,vEv v
vvvms,,,(/)
范文五:第四实验 用相位法测声速
实验四 用相位法测声速
一、实验目的
1. 、学习用相位法测量空气中的声速。 2. 、了解空气中的声速与温度的关系。
3、提高声学、电磁学等不同类型仪器的综合使用能力。 4、了解换能器的原理及工作方式。 二、实验仪器
综合声速测定仪、综合声速测定仪信号源、双综示波器。
三、实验原理
测量f 情况下,测量声信号的波长λ,由公式v =λf ,计算出声速v 。
相位法测量声速的原理。 由信号源产生的一正弦波信号,一方面由“示波器”端钮将信号送入示波器的“CH1(X 轴)”,另一方面由“换能器”端钮将信号送入综合测定仪的“S1”,再传送到“S2”,然后送入示波器的“CH2(Y轴) ”。在示波器上将显示出两个频率相等、振动方向相互垂直、位相差恒定的利萨如图形。由于两信号到达时间不同(或存在有波程差)而产生相位差。
?=2π
L
λ
相位差不同,利萨如图形也不同。如
X =A 1sin(ωt +?) Y =A 2sin(ωt +?)
两者相位相同或相位差为2π的整数倍,合成为一条直线。如果两者相位差为的奇数倍,即
2
X =A 1sin(ωt +?+
π
π
2
)
Y =A 2sin(ωt +?)
合成后的利萨如图形为椭圆。可见利萨如图形随相位差的变化而改变。当连续移S2,以增大S1与S2之间的距离时L ,利萨如图从直线到椭圆再到直线变化,如图2所示。当L 改变一个波长时,两信号的相位差改变2π,图形就重复变化。这样就可以测量出波长的长度。
四、实验步骤
1、按图1接线,将换能器间距离调整到约50mm 。信号源输出频率为f 0,大约为36000H Z 。
2、打开示波器电源,预热5分钟,待出现一条绿色的水平线。将开关置于“CH1”,显示X 方向的正弦波形,然后将开关置于”CH2”, 显示Y 方向的波形。应使两者的幅度大致相等。幅度不应过大。
3、将示波器的旋钮旋到X ?Y 位置,示波器出现“椭圆”图形。将图形调至中间。旋转声速测定仪上的手轮,看图形的变化规律,看是否是从左到右再从右到左变化。
4、将利萨如图形调成一条直线,并记住直线的位置。打开自动记录仪的电源开关,并清零。
5、转动声速测定仪上的手轮,逐步增大换能器间距,观察相应的李萨如图形,直到图形再回到开始的直线位置时,记录下记录仪上的读数,记录信号源上的频率。
6、重复步骤5。记录8组数据,填在相应的表内。 五、数据记录
六、数据处理 计算平均波长
λ=
λ1+λ2+λ3+λ4
4
波长绝对误差
平均频率
?λ=
8
f =
∑
n =1
f n
频率绝对误差 计算平均声速 相对误差 绝对误差
?f ==λ f
E v =
?v =E v
v =±?v (m /s )