范文一:轮速传感器工作原理是怎么样的?
轮速传感器安装位置图解及工作原理
汽车内部有很多监测的仪器,是为了让驾驶者在行驶的过程中能够及时的了解到汽车相应的情况。轮速传感器就是其中一种,他到底是来测试了解什么参数呐?他的工作原理又是怎样的呐?
轮速传感器介绍
他主要是用来测试汽车车轮转速的一种传感器,已经成为了现代汽车不可缺少的转速信息体现设备。汽车动态控制系统(VDC)、汽车电子稳定程序(ESP)、防抱死制动系统(ABS)、自动变速器的控制系统这些装置的使用都需要转速信息。
轮速传感器类型
磁电式轮速传感器:他的优点是制造的成本简单、制造的结构简单、不惧怕污泥;他具有的缺点是频率的响应不是很高,当车速高速行驶时,响应的频率会跟不上也会产生错误的信号,抗电磁波干扰的能力非常的差,输出信号的振幅也比较小。
霍尔式轮速传感器:这种传感器主要是运用了霍尔效应原理进行制造的,他具有输出信号电压振幅值不受转速的影响、频率响应高、抗电磁波干扰能力强等优点。
轮速传感器工作原理
磁电式轮速传感器原理:他主要是有永磁性磁芯和线圈这两部分组成的,磁力线主要是通过磁芯的一极出来,通过齿圈和空气,然后在回到另一极。每当车轮在运转的时候,都会依次的穿过感应磁场也会改变其磁阻,这时就会导致电势发生相应的变化。每一个频率和幅度都反映了汽车轮旋转的快慢程度。
磁电式轮速传感器结构:主要是由永磁铁、极轴、感应线圈来组成,还分为了凿式、柱式、菱形这三种形式。
霍尔式轮速传感器原理:主要是通过半导体的两端进行电流的控制,还要在薄片的垂直方向上增加磁场,这时薄片就会在两端产生一种控制电流、磁感应强度大小的电势。主要还是靠磁感应强度进行信号的输出,通过输入的强度变化使其产生霍尔电势脉冲。主要对其内部进行放大、整形、功放等功效,通过脉冲的频率反应车轮旋转的快慢。
霍尔式轮速传感器组成:主要是由传感头和齿圈两大部分组成,传感头还由永磁体、霍尔元件和电子电路等组成。
范文二:传感器工作原理
传感器工作原理
压电传感器:基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量,如压力、加速度等(见压电式压力传感器、加速度计)。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。配套仪表和低噪声、小电容、高绝缘电阻电缆的出现,使压电传感器的使用更为方便。它广泛应用于工程力学、生物医学、电声学等技术领域。
应变传感器:应变传感器是国内外应用较广泛的一种,它是以电阻应变计为转换元件,将非电量如:力、压力、位移、加速度、扭矩等参数转换为电量。
光电传感器:将光信号转换成电信号的传感器
热电传感器:将热信号转换成电信号的传感器
电容式传感器原理
电容式传感器原理
电容式压力传感器简介
科学技术的不断发展极大地丰富了压力测量产品的种类,现在,压力传感器的敏感原理不仅有电容式、压阻式、金属应变式、霍尔式、振筒式等等但仍以电容式、压阻式和金属应变式传感器最为多见。
金属应变式压力传感器是一种历史较长的压力传感器,但由于它存在迟滞、蠕变及温度性能差等缺点,其应用场合受到了很大的限制。
压阻式传感器是利用半导体压阻效应制造的一种新型的传感器,它具有制造方便,成本低廉等特点,但由于半导体材料对温度极为敏感,所以其性能受温度影响较大,产品的一致性较差。
电容式传感器是应用最广泛的一种压力传感器,其原理十分简单。一个无限大平行平板电容器的电容值可表示为:
C= ε s/d(ε 为平行平板间介质的介电常数,d 为极板的间距, s 为极板的覆盖面积)
改变其中某个参数,即可改变电容量。由于结构简单,几乎所有电容式压力传感器均采用改变间隙的方法来获得可变电容。电容式传感器的初始电容值较小,一般为几十皮法,它极易受到导线电容和电路的分布电容的影响,因而必须采用先进的电子线路才能检测出电容的微小变化。可以说,一个好的电容式传感器应该是可变电容设计和信号处理电路的完美结合
机械磅秤是利用杠杆位移原理秤量被测物体的质量,它是一种模拟测量,所以显示值误差很大。电子衡器是利用传感器测量原理,它是把外部的压力通过传感器的弹性梁变形使之贴在上面的应变片发生阻值变化,在激励电压的作用下,输出与被测物成正比的模拟的电信号,给AD电路。
电子衡器的AD电路,它把传感器送来的模拟信号进行调制、放大、滤波、取样、积分,输出稳定高效的数字信号,送给中央微处理器(CPU),由CPU控制内部的工作程序通过显示电路,显示出被测物重量值。
秤量的标定,是由国家标准量值(法定砝码)的质量,输出的数字码(BCD码)与CPU内部程序存储器所编制的程序校准码一致时,便可完成秤量标定。模拟衡器是靠标准砝码直接标定,技术含量低,容易作假(取决于标准砝码的质量)。电子衡器的秤量标定需要标准砝码,但还需要标定密码。标定密码由衡器生产厂家掌握,它是严格保密的。
电子衡器的非法标定是利用标准砝码的质量值与校准程序的校准码值的允许范围来进行的,因为校准数码值是有一定范围空间的(例如最大秤量150kg的电子秤,它的50kg内码值是在12000~18000范围内都可以标定为50kg显示值。如果标定砝码实际质量是49kg标定出的显示值是50kg,那么该电子秤显示150kg时它的实际重量是147kg。这种秤在市场贸易中就会造成什么后果,不言而喻。 这就是法制计量在国民经济中的重要性。
第一部分 电子秤的原理方框图:
程式 K/B(按键) ↑ Fx → 传感器 → OP放大 → A/D转换 → CPU → 显示驱动 → 显示屏 ↓ 记忆体 工作流程说明: 当物体放在秤盘上时,压力施给传感器,该传感器发生形变,从而使阻抗发生变化,同时使用激励电压发生变化,输出一个变化的模拟信号。该信号经放大电路放大输出到模数转换器。转换成便于处理的数字信号输出到CPU运算控制。CPU根据键盘命令以及程序将这种结果输出到显示器。直至显示这种结果。
第二部分 秤的分类: 1.按原理分:电子秤 机械秤 机电结合秤 2.按功能分:计数秤 计价秤 计重秤 3.按用途分:工业秤 商业秤 特种秤
第三部分 秤的种类: 1.桌面秤 指全称量在30Kg以下的电子秤 2.台秤 指全称量在30-300Kg以内的电子秤 3.地磅 指全称量在300Kg以上的电子秤 4.精密天平
第四部分 按精确度分类: I级: 特种天平 精密度≥1/10万 II级: 高精度天平 1/1万≤精密度<1/10万 III级: 中精度天平 1/1000≤精密度<1/1万 IV级: 普通秤 1/100≤精密度<1/1000
第五部分 专业术语: 1.最大称量: 一台电子秤不计皮重,所能称量的最大的载荷; 2.最小称量: 一台电子秤在低于该值时会出现的一个相对误差; 3.安全载荷: 120%正常称量范围; 4.额定载荷: 正常称量范围; 5.允许误差: 等级检定时允许的最大偏差; 6.感量: 一台电子秤所能显示的最小刻度;通常用“d”来表示; 7.解析量: 一台具有计数功能的电子秤,所能分辩的最小刻度; 8.解析度: 一台具有计数功能的电子秤,内部具有分辩能力的一个参数; 9.预热时间: 一台秤达到各项指标所用的时间; 10.精度: 感量与全称量的比值; 11.电子秤使用环境温度为: -10摄氏度 到 40摄氏度 12.台秤的台面规格: 25cm X 30cm 30cm X 40cm 40cm X 50cm 42cm X 52cm 45cm X 60cm
第六部分 电子秤的特点: 1.实现远距离操作; 2.实现自动化控制; 3.数字显示直观、减小人为误差; 4.准确度高、分辩率强; 5.称量范围广; 6.特有功能:扣重、预扣重、归零、累计、警示等; 7.维护简单; 8.体积小; 9.安装、校正简单; 10.特种行业,可接打印机或电脑驱动; 11.智能化电子秤,反应快,效率高;
第七部分 电子秤检查过程: 1.首先整体检查:有无磨损和损坏; 2.能否开机:开机后是否从0到9依次显示、数字是否模糊、能否归零; 3.有无背光; 4.用砝码测试能否称重; 5.充电器是否完好,能否使用; 6.配件是否齐全;
第八部分 传感器类型: 1.电阻式:价格适中、精度高、使用广泛; 2.电容式:体积小、精度低; 3.磁浮式:特高精度、造价高; 4.油压式:现市场上已淘汰; 显示器种类: 1.LCD(液晶显示):免插电、省电、附带背光; 2.LED:免插电、耗电、很亮; 3.灯管:插电、耗电、很高; K/B(按键)类型: 1.薄膜按键:触点式; 2.机械按键:由许多单独按键组合在一起; 传感器的特性: 1.额定载荷; 2.输出灵敏度; 3.非线性; 4.滞后; 5.重复性; 6.蠕变; 7.零点输出影响; 8.额定输出温度影响; 9.零点输入; 10.输入阻抗; 11.输出阻抗; 12.绝缘阻抗; 13.容许激励电压;(5-18V)
第九部分 传感器损坏后现象: 1.称量不准; 2.显示不归零; 3.显示的数字乱跳 判断传感器的+E、-E、+S、-S 1.先用电阻档测4条线两两这间的电阻值,共有6组。如为400-450欧 则为+E、-E;如果为350欧,则为+S、-S;为290欧,则为R桥臂; 2.在+E、-E端接上+_5V电压,传感器正确施加一个压力,如输出+_S增大,则红表笔为+S,反之-S;
第十部分 高精度计数秤特点: 1.Kg/Ib单位转换功能; 2.零点显示范围、调整功能(GLH系列没有) 3.取样速度调节功能; 4.有10组单重记忆功能; 5.可同时进行重量、数量、累计功能(GLH只有数量累计) 6.可设定重量、数量上限警示功能; 7.自动零点追踪、温度线性校正; 8.扣重及预扣重功能; 9.待机功能; 10.有零点显示范围和零点跟踪范围; 11.有电池电压管制限制功能;
压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。
用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感 材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。
传感器的灵敏度
灵敏度是指传感器在稳态工作情况下输出量变化△y对输入量变化△x的比值。
它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。否则,它将随输入量的变化而变化。
灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。
当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。
提高灵敏度,可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。
传感器常用术语
1.传感器
能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。通常有敏感元件和转换元件组成。
① 敏感元件是指传感器中能直接(或响应)被测量的部分。
② 转换元件指传感器中能较敏感元件感受(或响应)的北侧量转换成是与传输和(或)测量的电信号部分。
③ 当输出为规定的标准信号时,则称为变送器。
2.测量范围
在允许误差限内被测量值的范围。
3. 量程
测量范围上限值和下限值的代数差。
4. 精确度
被测量的测量结果与真值间的一致程度。
5.从复性
在所有下述条件下,对同一被测的量进行多次连续测量所得结果之间的符合程度: 相同测量方法:
相同观测者:
相同测量仪器:
相同地点:
相同使用条件:
在短时期内的重复。
6. 分辨力
传感器在规定测量范围圆可能检测出的被测量的最小变化量。
7. 阈值
能使传感器输出端产生可测变化量的被测量的最小变化量。
8. 零位
使输出的绝对值为最小的状态,例如平衡状态。
9. 激励
为使传感器正常工作而施加的外部能量(电压或电流)。
10. 最大激励
在市内条件下,能够施加到传感器上的激励电压或电流的最大值。
11. 输入阻抗
在输出端短路时,传感器输入的端测得的阻抗。
12. 输出
有传感器产生的与外加被测量成函数关系的电量。 13. 输出阻抗 在输入端短路时,传感器输出端测得的阻抗。 14. 零点输出 在市内条件下,所加被测量为零时传感器的输出。 15. 滞后 在规定的范围内,当被测量值增加和减少时,输出中出现的最大差值。 16. 迟后 输出信号变化相对于输入信号变化的时间延迟。 17. 漂移 在一定的时间间隔内,传感器输出终于被测量无关的不需要的变化量。 18. 零点漂移 在规定的时间间隔及室内条件下零点输出时的变化。 19. 灵敏度 传感器输出量的增量与相应的输入量增量之比。 20. 灵敏度漂移 由于灵敏度的变化而引起的校准曲线斜率的变化。 21.热灵敏度漂移 由于灵敏度的变化而引起的灵敏度漂移。 22. 热零点漂移 由于周围温度变化而引起的零点漂移。 23. 线性度 校准曲线与某一规定直线一致的程度。 24. 非线性度 校准曲线与某一规定直线偏离的程度。 25.长期稳定性 传感器在规定的时间内仍能保持不超过允许误差的能力。 26. 固有凭率 在无阻力时,传感器的自由(不加外力)振荡凭率。 27. 响应 输出时被测量变化的特性。 28.补偿温度范围 使传感器保持量程和规定极限内的零平衡所补偿的温度范围。 29. 蠕变 当被测量机器多有环境条件保持恒定时,在规定时间内输出量的变化。 30. 绝缘电阻
如无其他规定,指在室温条件下施加规定的直流电压时,从传感器规定绝缘部分之间测得的电阻值。
范文三:传感器工作原理
霍尔效应传感器工作原理
如图所示,磁场中有一个霍尔半导体片,恒定电流I从A到B通过该片。在洛仑兹力的作用下,I的电子流在通过霍尔半导体时向一侧偏移,使该片在CD方向上产生电位差,这就是所谓的霍尔电压。
霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低。霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使 该电压放大到足以输出较强的信号。若使霍尔集成电路起传感作用,需要用机械的方法来改变磁场强度。下图所示的方法是用一个转动的叶轮作为控制磁通量的开 关,当叶轮叶片处于磁铁和霍尔集成电路之间的气隙中时,磁场偏离集成片,霍尔电压消失。这样,霍尔集成电路的输出电压的变化,就能表示出叶轮驱动轴的某一 位置,利用这一工作原理,可将霍尔集成电路片用作用点火正时传感器。霍尔效应传感器属于被动型传感器,它要有外加电源才能工作,这一特点使它能检测转速低 的运转情况。
霍尔效应传感器
1-霍尔半导体元件 2-永久磁铁 3-挡隔磁力线的叶片
超声波传感器 - 产品概述
超声波传感器
以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。
超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,使用前必须预先了解它的性能。超声波传感器的主要性能指标包括:
超声波传感器 - 性能指标
超声波传感器
1的共振频率相等时,输出的能量最大,灵敏度也最高。
2、工作温度。由于压电材料的居里点一般比较高,所以工作温度比较低,可以长时间地工作而不失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。
3
超声波传感器 - 工作原理
超声波传感器 人们能听到声音是由于物体振动产生的,它的频率在20HZ-20KHZ范围内,超过20KHZ称为超声波,低于20HZ的称为次声波。常用的超声波频率为几十KHZ-几十MHZ。 超声波是一种在弹性介质中的机械振荡,有两种形式:横向振荡(横波)及纵和振荡(纵波)。在工业中应用主要采用纵向振荡。超声波可以在气体、液体及固体中传播,其传播速度不同。另外,它也有折射和反射现 象,并且在传播过程中有衰减。在空气中传播超声波,其频率较低,,一般为几十KHZ,而在固体、液体中则频率可用得较高。在空气中衰减较快,而在液体及固 体中传播,衰减较小,传播较远。利用超声波的特性,可做成各种超声传感器,配上不同的电路,制成各种超声测量仪器及装置,并在通迅,医疗家电等各方面得到广泛应用。 超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁 致伸缩)两类。电致伸缩的材料有锆钛酸铅(PZT)等。压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接 收到超声波时,也能转变成电能,所以它可以分成发送器或接收器。有的超声波传感器既作发送,也能作接收。这里仅介绍小型超声波传感器,发送与接收略有差 别,它适用于在空气中传播,工作频率一般为23-25KHZ及40-45KHZ。这类传感器适用于测距、遥控、防盗等用途。该种有T/R-40-60,T /R-40-12等(其中T表示发送,R表示接收,40表示频率为40KHZ,16及12表示其外径尺寸,以毫米计)。另有一种密封式超声波传感器(MA40EI型)。它的特点是具有防水作用(但不能放入水中),可以作料位及接近开关用,它的性能较好。超声波应用有三种基本类型,透射型用于遥控器,防盗报警器、自动门、接近开关等;分离式反射型用于测距、液位或料位;反射型用于材料探伤、测厚等。
由发送传感器(或称波发送器)、接收传感器(或称波接收器)、控制部分与电源部分组成。发送器传感器由发送器与使用直径为15mm左右的陶瓷振子换能器组成,换能器作用是将陶瓷
振子的电振动能量转换成超能量并向空中幅射;而接收传感器由陶瓷振子换能器与放大电路组成,换能器接收波产生机械振动,将其变换成电能量,作为传感器接收器的输出,从而对发送的超进行检测.而实际使用中,用发送传感器的陶瓷振子的也可以用做接收器传感器社的陶瓷振子。控制部分主要对发送器发出的脉冲链频率、占空比及稀疏调制和计数及探测距离等进行控制。
超声波传感器 - 工作程式
SRF05 超声波传感器
若对发送传感器内谐振频率为40KHz的压电陶瓷片(双晶振子)施加40KHz高频电压,则压电陶瓷片就根据所加高频电压极性伸长与缩短,于是发送40KHz频率的超声波,其超声波以疏密形式传播(疏密程度可由控制电路调制),并传给波接收器。接收器是利用压力传感器所采用的压电效应的原理,即在压电元件上施加压力,使压电元件发生应变,则产生一面为“+ ”极,另一面为“-”极的40KHz正弦电压。因该高频电压幅值较小,故必须进行放大。 超声波传感器使得驾驶员可以安全地倒车,其原理是利用探测倒车路径上或附近存在的任何障碍物,并及时发出警告。所设计的检测系统可以同时提供声光并茂的听觉和视觉警告,其警告表示是探测到了在盲区内障碍物的距离和方向。这样,在狭窄的地方不管是泊车还是开车,借助倒车障碍报警检测系统,驾驶员心理压力就会减少,并可以游刃有余地采取必要的动作。
更多超声波资料请登录:http://www.huanor.com
超声波传感器 - 系统构成
SRF08 超声波传感器
由 发送传感器 ( 或称波发送器 ) 、接收传感器 ( 或称波接收器 ) 、控制部分与电源部分组成。发送器传感器由发送器与使用直径为 15mm 左右的陶瓷振子换能器组成,换能器作用是将陶瓷振子的电振动能量转换成超能量并向空中幅射;而接收传感器由陶瓷振子换能器与放大电路组成,换能器接收波产 生机械振动,将其变换成电能量,作为传感器接收器的输出,从而对发送的超进行检测 . 而实际使用中,用发送传感器的陶瓷振子的也可以用做接收器传感器社的陶瓷振子。控制部分主要对发送器发出的脉冲链频率、占空比及稀疏调制和计数及探测距离 等进行控制。超声波传感器电源 ( 或称信号源 ) 可用 DC12V ± 10 % 或 24V ± 10 % 。
超声波传感器 - 工作模式
超声波传感器
超声波传感器利用声波介质对被检测物进行非接触式无磨损的检测。超声波传感器对透明或有色物体,金属或非金属物体,固体、液体、粉状物质均能检测。其检测性能几乎不受任何环境条件的影响,包括烟尘环境和雨天。
检测模式
超声波传感器主要采用直接反射式的检测模式。位于传感器前面的被检测物通过将发射的声波部分地发射回传感器的接收器,从而使传感器检测到被测物。 还有部分超声波传感器采用对射式的检测模式。一套对射式超声波传感器包括一个发射器和一个接收器,两者之间持续保持“收听”。位于接收器和发射器之间的被检测物将会阻断接收器接收发射的声波,从而传感器将产生开关信号。
检测范围和声波发射角
超声波传感器的检测范围取决于其使用的波长和频率。波长越长,频率越小,检测距离越大,如具有毫米级 波长的紧凑型传感器的检测范围为300~500mm波长大于5mm的传感器检测范围可达8m。一些传感器具有较窄的6o声波发射角,因而更适合精确检测相 对较小的物体。另一些声波发射角在12o至15o的传感器能够检测具有较大倾角的物体。此外,我们还有外置探头型的超声波传感器,相应的电子线路位于常规 传感器外壳内。这种结构更适合检测安装空间有限的场合。
传感器调节
几乎所有的超声波传感器都能对开关输出的近点和远点或是测量范围进行调节。在设定范围外的物体可以被检测到,但是不会触发输出状态的改变。一些传感器具有不同的调节参数,如传感器的响应时间、回波损失性能,以及传感器与泵设备连接使用时对工作方向的设定调节等。
重复精度
波长等因素会影响超声波传感器的精度,其中最主要的影响因素是随温度变化的声波速度,因而许多超声波传感器具有温度补偿的特性。该特性能使模拟量输出型的超声波传感器在一个宽温度范围内获得高达0.6mm的重复精度。
输出功能
所有系列的超声波传感器都有开关量输出型产品。一些产品还有2路开关量输出(如最小和最大液位控制)。大多数产品系列都能提供具有模拟量电流或是模拟电压输出的产品。 噪声抑制
金属敲击声、轰鸣声等噪声不会影响超声波传感器的参数赋值,这主要是由于频率范围的优选和已获专利的噪声抑制电路。
同步功能 超声波传感器的同步功能可防干扰。他们通过将各自的同步线进行简单的连接来实现同步功能。它们同时发射声波脉冲,象单个传感器一样工作,同时具有扩展的检测角度。
传感器交替性工作(多通道)
超声波传感器 超长扫描型
以交替方式工作的超声波传感器彼此间是相互独立的,不会相互影响。以交替方式工作的传感器越多,响应的开关频率越低。
检测条件
超声波传感器特别适合在“空气”这种介质中工作。这种传感器也能在其它气体介质中工作,但需要进行灵敏度的调节。
盲区
直接反射式超声波传感器不能可靠检测位于超声波换能器前段的部分物体。由此,超声波换能器与检测范围起点之间的区域被称为盲区。传感器在这个区域内必须保持不被阻挡。 空气温度与湿度
空气温度与湿度会影响声波的行程时间。空气温度每上升20oC,检测距离至多增加3.5%。在相对干燥的空气条件下,湿度的增加将导致声速最多增加2%。
空气压力
常规情况下大气变化±5%(选一固定参考点)将导致检测范围变化±0.6%。大多数情况下,传感器在5Bar压力下使用没有问题。
气流
气流的变化将会影响声速。然而由最高至10m/s的气流速度造成的影响是微不足道的。在产生空气涡流比较普遍的条件下,例如对于灼热的金属而言,建议不要采用超声波传感器进行检测,因为对失真变形的声波的回声进行计算是非常困难的。
标准检测物
采用正方形声反射板用于额定开关距离sn的标定。
1mm的厚度
垂直性:与声束轴线垂直。
防护等级
外壳可防固体颗粒和防水。
IP65:完全防尘;防水柱的侵入。
IP67:完全防尘;在恒温下浸入水下1m深处并放置30分钟,能够有效防护。
IP69K:基于EN60529的符合DIN40050-9
泵功能
可施行双位置控制,例如一个液位控制系统的泵入泵出功能。当一个被测物远离传感器到达检测范围的远点时,输出动作。当被测物靠近传感器到达检测范围设定的近点时,输出相反的动作。
超声波传感器 - 检测好坏
测试电路图 超声波传感器用万用表直 接测试是没有什么反映的。要想测试超声波传感器的好坏可以搭一个音频振荡电路,当C1为390OμF时,在反相器⑧脚与⑩脚间可产生一个1.9kHz左右 的音频信号。把要检测的超声波传感器(发射和接收)接在⑧脚与⑩脚之间;如果传感器能发出音频声音,基本就可以确定比超声波传感器是好的。
注:C1=3900μF时,为1.9kHZ左右;C1=0.O1μF时,约0.76kHZ。
超声波传感器 - 技术应用
超声波传感器
超声波传感技术应用在生产实践的不同方面,而医学应用是其最主要的应用之一,以医学为例子说明超声波传感技术的应用。超声波在医学上的应用主要是诊断疾病,它已经成为了临床医学中不可缺少的诊断方法。超声波诊断的优点是:对受检者无痛苦、无损害、方法简便、
显像清晰、诊断的准确率高等。因而推广容易,受到医务工作者和患者的欢迎。超声波诊断可以基于不同的医学原理,其中有代表性的一种所谓的A型方法。这个方法是利用超声波的反射。当超声波在人体组织中传播遇到两层声阻抗不同的介质界面是,在该界面就产生反射回声。每遇到一个反射面时,回声在示波器的屏幕上显示出来,而两个界面的阻抗差值也决定了回声的振幅的高低。
在工业方面,超声波的典型应用是对金属的无损探伤和超声波测厚两种。过去,许多技术因为无法探测到物体组织内部而受到阻碍,超声波传感技术的出现改变了这种状况。当然更多的超声波传感器是固定地安装在不同的装置上,“悄无声息”地探测人们所需要的信号。在未来的应用中,超声波将与信息技术、新材料技术结合起来,将出现更多的智能化、高灵敏度的超声波传感器。
遥控开关超声波遥控开关可控制家用电器及照明灯。采用小型超声波传感器(Φ12-Φ16),工作频率在40KHZ,遥控距离约10米.遥控器的发送,这是由555时基电路组成的振荡器,调整10KΩ电位器,使振荡频率为40KHZ,传感器接在③脚,接下按钮时,发送出超声波,接收电路。电源由220V经电容降压、整流、滤波、稳压后获得12V工作电压。由于是非隔离电源,要整个电路用塑料外壳封装,以防触电(在调试时也应注意)。信号由 超声波接收器接收,经Q1、Q2放大(L、C谐振槽路调谐在40KHZ)。放大后的信号去触发由Q3、Q4组成的双稳态电路,Q5及LED作为触发隔离, 并可发光显示。由于双稳态在开机时有随机性,故加一清零按钮。Q5输出的触发信号使双向可控硅导通,负载接通。要负载断路,则要按一次发送钮。 液位指示及控制器由于超声波在空气中 有一定的衰减,则发送到液面及从液面反射回来的信号大小与液位有关,液面位置越高,信号越大;液面越低则信号就小。接收到的信号经BG1、BG2放大,经 D1、D2整流成直流电压。当4.7KΩ上的电压超过BG3的导通电压时,有电流流过BG3,电流表有指示,电流大小与液面有关。当液位低于设置值时,比 较器输出为低电平。BG不导通,若液位升到规定位置,比较器翻转,输出高电平。BG导通,J吸合,可通过电磁阀将输液开关关闭,以达到控制的目的(高位控 制)。
超声波传感器 - 液位测试
液位测试原理 超声波测量液位的基本原理是:由超声探头发出的超声脉冲信号, 在气体中传播,遇到空气与液体的界面后被反射,接收到回波信号后计算其超声波往返的传播时间,即可换算出距离或液位高度。超声波测量方法有很多其它方法不 可比拟的优点:(1)无任何机械传动部件,也不接触被测液体,属于非接触式测量,不怕电磁干扰,不怕酸碱等强腐蚀性液体等,因此性能稳定、可靠性高、寿命 长;(2)其响应时间短可以方便的实现无滞后的实时测量。 系统采用的超声波传感器的工作频率为 40kHz左右。由发射传感器发出超声波脉冲,传到液面经反射后返回接收传感器,测出超声波脉冲从发射到接收到所需的时间,根据媒质中的声速,就能得到从 传感器到液面之间的距离,从而确定液面。考虑到环境温度对超声波传播速度的影响,通过温度补偿的方法对传播速度予以校正,以提高测量精度。计算公式为: V=331.5+0.607T (1)
式中:V为超声波在空气中传播速度;T为环境温度。
S=V ×t/2=V×(t1-t0)/2 (2)
式中:S为被测距离;t为发射超声脉冲与接收其回波的时间差;t1为超声回波接收时刻;t0为超声脉冲发射时刻。利用MCU的捕获功能可以很方便地测量t0时刻和t1时刻,根据以上公式,用软件编程即可得到被测距离S。由于本系统的MCU选用了具有SOC特点的混合信号处理器,其内部集成了温度传感器,因此可利用软件很方便的实现对传感器的温度补偿。 超声波传感器 - 注意事项
注意事项
1
2:由于超声波传感器以空气作为传输介质,因此局部温度不同时,分界处的反射和折射可能会导致误动作,风吹时检出距离也会发生变化。因此,不应在强制通风机之类的设备旁使用传感器。
3:喷气嘴喷出的喷气有多种频率,因此会影响传感器且不应在传感器附近使用。 4:传感器表面的水滴缩短了检出距离。
5:细粉末和棉纱之类的材料在吸收声音时无法被检出(反射型传感器)。
6:不能在真空区或防爆区使用传感器。
7:请勿在有蒸汽的区域使用传感器;此区域的大气不均匀。将会产生温度梯度,从而导致测量错误。
超声波传感器 - 暴露问题
超声波传感器
超声波传感器应用起来原理简单,也很方便,成本也很低。但是目前的超声波传感器都有一些缺点,比如,反射问题,噪音,交叉问题。
反射问题: 如果被探测物体始终在合适的角度,那超声波传感器将会获得正确的角度。但是不幸的是,在实际使用中,很少被探测物体是能被正确的检测的。
其中可能会出现几种误差:
三角误差,当被测物体与传感器成一定角度的时候,所探测的距离和实际距离有个三角误差。 镜面反射,这个问题和高中物理中所学的光的反射是一样的。在特定的角度下,发出的声波被光滑的物体镜面反射出去,因此无法产生回波,也就无法产生距离读数。这时超声波传感器会忽视这个物体的存在。
多次反射,这种现象在探测墙角或者类似结构的物体时比较常见。声波经过多次反弹才被传感器接收到,因此实际的探测值并不是真实的距离值。
这些问题可以通过使用多个按照一定角度排列的超声波圈来解决。通过探测多个超声波的返回值,用来筛选出正确的读数。
噪音:
虽然多数超声波传感器的工作频率为40-45Khz,远远高于人类能够听到的频率。但是周围环境也会产生类似频率的噪音。比如,电机在转动过程会产生一定的高频,轮子在比较硬的地面上的摩擦所产生的高频噪音,机器人本身的抖动,甚至当有多个机器人的时候,其它机器人超声波传感器发出的声波,这些都会引起传感器接收到错误的信号。 这个问题可以通过对发射的超声波进行编码来解决,比如发射一组长短不同的音波,只有当探测头检测到相同组合的音波的时候,才进行距离计算。这样可以有效的避免由于环境噪音所引起的误读。
交叉问题:
交叉问题是当多个超声波传感器按照一定角度被安装在机器人上的时候所引起的。超声波X发出的声波,经过镜面反射,被传感器Z和Y获得,这时Z和Y会根据这个信号来计算距离值,从而无法获得正确的测量。
解决的方法可以通过对每个传感器发出的信号进行编码。让每个超声波传感器只听自己的声音。 超声波传感器 - 性能参数
超声波传感器
超声波传感器 - 主要系列
检测距离10~100mm10~200mm20~150mm20~250mm
30~250mm60~400mm60~350mm100~1000mm100~700mm
350~2500mm350~3400mm800~6000mm可选
输出方式开关量输出PNP、NPN可选
输出状态常开、常闭可选
连接方式直接附线、M8接插件、M12接插件可选
超声波频率380KHz240KHz120KHz可选
工作电压12~30Vdc20~30Vdc可选
工作温度范围(0℃~ 60℃)(-10℃~ 60℃)(-20℃~ 70℃)
一个开关量输出 (-25℃~ 60℃)可选
防护等级:IP67IP65可选
短路保护:有
反极性保护:有
检测距离30~250mm350~2500mm60~400mm100~1000mm
100~700mm60~350mm200~1300mm350~3400mm800~
6000mm可选
输出方式开关量PNP
输出状态常开、常闭可选
连接方式M8接插件、M12接插件可选
超声波频率230KHz120KHz240KHz300KHz400KHz
工作电压12~30Vdc
工作温度范围(-10℃~ 60℃)(0℃~ 60℃)( 10℃~ 60℃)
二个开关量输出 (-20℃~ 70℃)
防护等级:IP67IP65
短路保护:有
反极性保护:有
检测距离0~700mm
输出方式开关量输出PNP、NPN可选
输出状态常开、常闭可选
连接方式直接附线、M12接插件可选
声波束角8°
超声波频率220KHz
工作电压12~30Vdc
工作温度范围(0℃~ 60℃)
对射式 防护等级:IP67
短路保护:有
反极性保护:有
检测距离20~200mm30~250mm60~400mm100~1000mm
200~2000mm可选
输出方式模拟量输出4~20mA0~10V可选
输出状态常开、常闭可选
连接方式直接附线、M8接插件、M12接插件可选
超声波频率380KHz300KHz400KHz240KHz200KHz
工作电压15~30Vdc
工作温度范围(-10℃~ 60℃)
模拟量输出 防护等级:IP67
短路保护:有
反极性保护:有
模拟量输出
超声波传感器诠释 一 解决其它技术无法解决的问题
激光距离传感器可用于其它技术无法应用的场合。例如,当目标很近时,计算来自目标反射光的普通光电传感器也能完成大量的精密位置检测任务。但是,当目标距离较远内或目
标颜色变化时,普通光电传感器就难以应付了。
虽然先进的背景噪声抑制传感器和三角测量传感器在目标颜色变化的情况下能较好地工作,但是,在目标角度不固定或目标太亮时,其性能的可预测性变差。此外,三角测量传感器一般量程只限于0.5m以内。
二 在自动化领域的广泛用途
超声波传感器虽然也经常用于检测距离较远的物体,而且由于它不是光学装置,所以不受颜色变化的影响。但是,超声波传感器是依据声速测量距离的,因此存在一些固有的缺点,不能用于以下场合。
①待测目标与传感器的换能器不相垂直的场合。因为超声波检测的目标必须处于与传感器垂直方位偏角不大于10°角以内。
②需要光束直径很小的场合。因为一般超声波束在离开传感器2m远时直径为0.76cm。 ③需要可见光斑进行位置校准的场合。
④多风的场合。
⑤真空场合。
⑥温度梯度较大的场合。因为这种情况下会造成声速的变化。
⑦需要快速响应的场合。
而激光距离传感器能解决上述所有场合的检测。
如今,自动检测和控制的方法中,除了超声波传感器和普通光电传感器外,又增加了一个能解决长距离测量和检验的新方法—激光距离传感器。它为各种不同场合提供了应用的灵活性,这些场合可包括如下:
①设备定位。
②测量料包的料位。
③测量传送带上的物体距离和物体高度。
④测量原木直径。
⑤保护高架起重机免于碰撞。
⑥无误差检查场合。
三 几个应用实例
1、测量传送带上箱子的宽度
使用两个激光传感器,在传送带的两侧面对面安装。因为尺寸变化的箱子落到传送带上的位置是不固定的,这样,每个传感器都测量出自己与箱子的距离,设一个 距离为L1,另一个为L2。此信息送给PLC,PLC将两个传感器间总的距离减去L1和L2,从而可计算出箱子的宽度W。
2、保护液压成型冲模
机械手把一根预成型的管材放进液压成型机的下部冲模中,操作者必须保证每次放的位置准确。在上部冲模落下之前,一个发散型传感器测量出距离管子临界段的距离,这样可保证冲模闭合前处于正确位置。
3、二轴起重机定位
用两个反射型传感器面对反射器安装,反射器安装在桥式起重机的两个移动单元上。一个单元前后运动,另一个左右运动。当起重机驱动板架辊时,两个传感器监测各自到反射器的距离,通过PLC能连续跟踪起重机的精确位置。
有了这种新式廉价激光测距传感器,反射性或多颜色的目标长距离位置检测即使在检测角度变化的情
在这些先进的汽车摄像头安全系统中,增强的成像和感测能力开启了一个无限可能的世界。摄像头视觉系统采用远视场来补足长距离雷达,使用较宽视场来弥补短 距雷达或超声波传感器的不足,使得驾驶员可以看到前后方的道路。因此,可提供另一组数据来确认所绘制的整体图片的精确性。例如,来自雷达和摄像头的支持数 据能够大大增强决策的信心,如使用刹车系统等等.
自1969年电荷耦合器件(CCD)出现以来,其应用一直在增长,扩展到数码相机、望远镜、摄像机、扫描仪,以及其它成像应用领域。然而,CCD在汽车安 全应用方面有其固有的不足之处。最明显的是:CCD制造需要专门的工厂、设备及工艺,这给以低成本大批量生产汽车摄像头带来了困难。在汽车安全方 面,CCD架构也有内在的局限性。标准CCD图像传感器经设计以串行方式读出数据,这意味着必须在读出所有的先前像素之后,才能读出后面的像素。这限制了 帧速或每秒读取的图像数目,在快速捕捉图像为关键性功能的汽车安全应用中成为一种重要的缺陷。此外,大多数CCD摄像头不具备必需的宽动态范围 (WDR)功能。互补金属氧化物半导体(CMOS)图像传感器是替代的解决方案,它可在具有高成本效益的商业代工厂生产,使用与生产其它计算芯片相同的高量产工艺。 CMOS图像传感器具有随机访问读取功能,这意味着可对像素进行随机寻址,并可快速读出子帧(sub-frame),即感兴趣的区域。因此,CMOS图像 传感器克服了上述CCD传感器的某些缺点,而且具有几乎无限的子采样和子窗口能力。CMOS摄像头的一个附加优势是能够满足
宽动态范围(WDR)和低光照 性能要求,进一步推动CMOS图像传感器取代CCD传感器而成为众多成像市场(包括汽车市场)的首选传感器。场景处理
在场景处理应用中,处理单元使用成像器的输出来发送警报或做出有关车辆运行的决策,包括车道偏离警示、交通标志检测、下雨检测、前灯调暗和盲点检测。
使用这些智能化安全系统,处理计算机接收来自传感器的数据,做出决定,并向车辆子系统发送指令,以防止发生事故、减轻事故的严重程度或者保护车主。例如处理计算机可能使用来自图像传感器的数据,确定即将发生的碰撞,并向车辆子系统发出指令以采取刹车措施。
微处理器和图像传感器方面的技术进步使得智能化安全系统成为现实。随着技术进步的速度加快,集成更多智能性的图像传感器将成为被动和主动型安全系统的组成部分。
由于所使用的MC9S12DG128单片机的频率较低,最高只有25MHz,而摄像头的图像输出速率一般至少有13.5MHz(以30万像素为例),每个 像素的信号保持时间不到75ns,若使用单片机直接采集图像传感器输出的数字信号,则会受到其时钟频率的影响,难以将信号完整地采集进系统。
因此本系统使用FIFO芯片IDT7205作为图像传感器与单片机之间的数据缓存,通过设计一定的逻辑电路,使图像传感器自动地将图像数据写入FIFO,同时MCU开始从FIFO读出数据。图像采集系统结构框图如图1所示。
2.1 摄像头同步信号分析
OV7620的同步信号时序如下:垂直同步信号VSYN为两个正脉冲之间扫描一帧的定时,即完整的一帧图像在两个正脉冲之间;水平同步信号HREF扫描该 帧图像中各行像素的定时,即高电平时为扫描一行像素的有效时间;像素同步信号PCLK为读取有效像素值提供同步信号,高电平时输出有效图像数据,若当前图 像窗口大小为320×240,则在VSYN两个正脉冲之间有240个HREF的正脉冲,即240行;在每个HREF正脉冲期间有320个PCLK正脉
冲, 即每行320个像素。这就是VSYN、HREF、PCLK三个同步信号之间的关系[2]。OV7620同步信号时序如图2所示。
2.2 数字图像信号的采集
为了将图像传感器输出的图像信号自动地存入FIFO,只需要通过一个“与非门”就能产生符合FIFO要求的写时钟脉冲,如图3所示。将帧同步信号VSYN 引入单片机输入口,复位后V_EN置0,“与非门”关闭,输出1。当单片机检测到VSYN上跳后,V_EN输出1,打开“与非门”。当摄像头输出有效像素 时,HREF为高,PCLK高电平时像素数据有效,三者“与非”后输出为0,使信号产生一个下跳,触发FIFO锁存OV7620输出的图像数据。
经过图3电路处理后的系统时序如图4所示。写信号已符合脚的时序要求,经实际使用,功能正常。
当一帧图像写入FIFO后,单片机根据时序要求在FIFO的脚上产生相应脉冲,即可从FIFO
中读出图像数据,按照一定格式存入内存,进行后续处理。图5为采集得到的黑线图像。
范文四:CCD传感器工作原理
先问问DX们一个问题,你认为多高像素、多大尺寸的DC能与银盐胶片水平一样, 回答:在目前及未来的单CCD图像传感器的DC产品,永远不会有与银盐胶片水平一样的产品。用传统相机的色友们可以高兴一下了~为什么, 因为,照片我们不光在乎它...先问问DX们一个问题,你认为多高像素、多大尺寸的DC能与银盐胶片水平一样, 回答:在目前及未来的单CCD图像传感器的DC产品,永远不会有与银盐胶片水平一样的产品。用传统相机的色友们可以高兴一下了~
为什么,
因为,照片我们不光在乎它的分辨率,我想DX最在乎的是色彩吧~对色彩还原及表现力。而单CCD从基本工作原理上就无法百分之百的采集到映在它感光面上的色彩,而银盐胶片能百分百记录映在它上面的所有色彩和光线(注意,我这里说的色彩是人眼能看到的,不是说看不到的,看不到的银盐胶片也大多采集不到)。
为了让大家明的我说的,我先从CCD的工作原理说起:
CCD的全称“Charge Coupled Device”意即电荷耦合器件,一种特殊的半导体。因研究和制造的技术含量颇高,故没几个厂能生产,能力最强产量较大的CCD品牌只有柯达、索尼、飞利浦三个。
CCD图像传感器由三层组成:
第一层,微镜头;第二层,滤色片;第三层,感光元件。
CCD图像传感器的每一个感光元件由一个光电二极管和控制相邻电荷的存储单元组成(我在上篇说过)光电管当然是捕捉光子用的,它将光子转化成电子,收集到的光线越强产生的电子数量就越多,电子信号强了当然就越容易被记录而越不容易丢失,图像细节就更丰富了。 所以要想让图像好,光电管的感光部份就要做得大。光电管做大点不是就能吸收到更多光线了吗,
这是个好方法。一片2/3英寸的CCD做成400万像素,那每个光电管都会比一片2/3英寸的CCD做成500万像素的光电管大。图像质理当然就好。可高像素是发展方向,怎么让500万像素的2/3英寸CCD出来的图像好过400万像素的2/3英寸CCD出来的图像呢,
这里要提出开口率这个概念:
一个光电管不可能全部地方都可以吸收光子,当感光元件按面阵(矩阵)方式排列(也就是象国际象棋棋盘一样方方正正的排列)组成完整的像素阵列时,光电管的感光部份都面向光线射入处的。但是光电管不能把面向光线射入处都做成感光部份,真正能感光部分的面积只是光电管面向光线射入处部份面积的60%-90%,这就是所谓的开口率。 开口率越高感光面积就越大光电管采集的光就越多。制造工艺好的大公司出品的CCD,因为开口率高图像品质就更好。所以500万像素的2/3英寸CCD中的感光元件只要提高了开品率,那么它的感光面积就可以做到于400万像素的2/3英寸CCD的感光面积相同或更高。加上更高的像素。图像当然好过400万像素的2/3英寸的CCD了。 但在开品率相同的情况下,因为400万像素的2/3英寸CCD的光电管比500万像素的2/3英寸CCD大,那么每个光电管的感光面积就大了,成像质量就会高于500万像素的2/3英寸CCD。所以在这里劝大家买DC时要注意CCD尺寸。
在制造工艺上,开品率每有一次重大突破,那CCD就升一代,所以CCD也分代呢。不过这是CCD技术发展早期的情况。
因为开口率再怎么做也做不到100%,光电管的感光面积永远无法等于光电管面向光线射入处的实际面积。所以在开口率上面是无法更上一步了。那怎么再次提高感光面积呢, 索尼最先想出了解决办法:在每个光电管上安装一个微镜片。把更多的光聚进来。这样感光面积就由微镜片来决定了。微镜片的发展决定CCD的品质了。
大家注意没有,上面我只提到光线而没谈色彩,这是因为CCD的感光元件天生是个色盲。只能记录光线的强弱而不能记录色彩。(注意,这也是它到今天也比不过银盐胶片的重要原因~)
大家有用Photoshop这个软件吗,知道它里面有通道这一项吗,大家可以看看Photoshop的通道。红、绿、蓝三个通道。大家只看一个通道,发现它是黑白的。这是因为,在每个颜色通道里只记录该颜色的强弱。三原色的强弱都记录下来了合在起,就成了有色彩的图像了。
CCD也用了这个原理。于是就在感光元件上加了一层滤色片。这个滤色片怎么用呢,对于3CCD系统来说,很简单。滤掉绿、蓝,只把红留下来,那这片CCD上记录下来的光线强弱就是红光的了。滤掉红、蓝,那这片CCD上记录下来的光线强弱就是绿光的。蓝光的也相同。3片记录下三种光线的强弱,也就是三原色的色彩通道了。合在一起完美的图像就出来了。
这里要很强调一个问题:聪明的朋友一定会想到,一束光进入相机照在3块CCD上,而每个CCD只占全部CCD面积的三分之一,那不是就等于这块CCD只记录了所有光的三分之一。如果它记录红光,它也只记录到所有红光的三分之一。而另两块CCD根本不记录红光。那不说3CCD总面积的红光被记丢了三分之二,那不是色彩丢失了,那这叫什么完美记录呀~
说得对,所以相机让这束光进来后不是直接照在3块CCD上,而是一个分光镜上,光被分成红、绿、蓝三束再分别照在每个CCD上。那么这束光的信息是不是就没有被丢失了。 可3CCD的成本太高,而且做出的相机体积大。这些就注定了它的昂贵及无法小型化,所以135相机还看不到。
135只能采用单CCD系统构成。而在单CCD上就无法象3CCD一样来记录所有的色彩了。按3CCD的思路,可以把单CCD分成三部分,每部分记录不同的颜色,光进来后由分光镜分光。不是可记录完整图像信息了吗。
但这种方法却行不通~单CCD是一平面。分光镜把光分开投在一个平面上,大家可以想像,三菱镜分出阳光,七种颜色会成过渡分布在一平面。而过渡段CCD怎么记录呢,在过渡段是用只留红光的滤光片还是只留绿光的呢,无论用哪种滤光片在过渡段都是不可能的。因为进入相机镜头光线的不同,分光后投在单CCD平面上的红、绿、蓝光的面积也不一样,而CCD分成采集不同光的三部分面积却固定了的。这样做只会让色彩信息丢失得越多。更不用说后期在图像处理器里合成更是问题。
所以单CCD只能用别的方法解决记录色彩问题,这种方法却是以丢失色彩信息记录色彩,然后在信号进入图像处理器后用特定的插值算法来算去丢失的色彩信息补在图像中生成图像。想想就知道这种方法得到的图像怎么可能和能完整记录原始色彩的银盐胶片相比。 那些厂家所称的已接进银盐胶片水平,也只是它们的插值算法更先进一步。就象大家常听的CD,再怎么高的采样率,也只是记录了44.1K-96K个点的声音,再会算法合成出来让大家听起来和原始声音没什么不同。(数码世界的悲哀呀~这完全是个人感叹,大家可不理采) 现在细说一下单CCD记录色彩的方法: 就500万像素的DC而言,进入相机镜头的光被分成500万个像素点来记录。1个像素点包含完整原始的色彩。一般单CCD会用4个感光元件来记录这一个完整原始的像素。那么我们把这个原始像素分成4份,1个感光元件1份。我们再把在这4个感光元件上面的同等面积大小的滤光片分成4份。这样就是:“1份原始像素?1份滤光片?1个感光元件”。
按单CCD技术要求:红、蓝、绿,按1:1:2的比例收集,记得我上面提过感光元件是按面阵(矩阵)方式排列的,4个感光元件被排成一个矩形来记录一个像素。成对角线的2个感光元件记录绿色,另两个感光元件分别记录红色、蓝色。为什么绿色要双份,因为人眼
对它敏感。
请大家注意这里:因为“1份原始像素?1份滤光片?1个感光元件”这个对应关系。记录红光的感光元件上的那份滤光片,就会滤掉别的光。而这份滤光片只处理1份原始像素,也就是说只处理整个像素的25,。而别3份原始像素里也含有红色呀,但其它3份滤光片都要滤掉红色。整个像素中75,的红色就这么丢失了。
对,就是只采这么多。红色只能收集到所有红色的25,,蓝色只能收集到所有蓝色的25,,绿色只能收集到所有绿色的50,~看到了吗,真实的色彩并没收集全整。一个原始像素中的75,的红色、75,的蓝色、50,的绿色就被丢掉了。
而这些滤色片滤掉的75,红色、75,蓝色、50,绿色呢,只好在图像处理器中用插值算法来解决了。然后再象Photoshop中的红、蓝、绿通道一样,按一定的算法合成出图像。1个像素点的大部分红色如果都集中在没被采集的那75,中。那要算出这个像素的红色就困难了,那么这个像素就失真的像素了。这些就加大了与真实色彩的差别。 好了,通过一大堆计算,图像出来了。可是本来记录的原始色彩信息就少,这样算来算去必然出现失真——偏色、噪点。
偏色我们能后期调正,可噪点呢,没什么好办法,光线足一点,拍摄的细节就能多捕捉到,噪点就少。最后的方法就是让图像处理器降噪,于是我们所有的相机都有了降噪这一功能。
范文五:传感器工作原理
德尔福单体泵控制系统—传感器
电控单体泵柴油机传感器汇总
lllllllll
传感器在线束图上位置(示意图)
传感器接插件实际线束布置
传感器装机示意图
电控单体泵柴油机传感器功能汇总
液温传感器(冷却水温&燃油温度)l
l
l
l
举售后服务故障实例:
液温传感器输出特性
进气温度传感器
llll
举售后服务故障实例:
进气温度传感器输出特性
增压压力传感器
l
l
l
l
l
l
l
举售后服务故障实例:
增压压力传感器输出特性
曲轴传感器和凸轮轴传感器l
l
l
l
l
l
举售后服务故障实例:
可变磁阻(VR)传感
器工作原理
VR传感器结构
VR传感器结构
影响VR信号的主要因素——空气间隙lll
举售后服务故障实例:
影响VR信号的主要因素——信
号盘
ll
l
l
l
l
l
VR传感器触发齿设计原则
VR传感器触发齿设计原则
电子油门传感器
lll
l
举售后服务故障实例:信号漂移与合理性各一
电子油门传感器
l
转载请注明出处范文大全网 » 轮速传感器工作原理是怎么样的