范文一:无线传感器网络和协议概念、组成无线传感器的重要元件及使用考虑因素
作者:Joe Tillison
Technology Director
Avnet Electronics Marketing “智能”能源管理应用和大量基于标准的低价无线MCU的普及刺激了市场上的无线传感器/致动器网络(WSAN)快速增长,这些市场包括家庭与楼宇自动化、远程医疗和照明等。据市场研究公司IDTechEx预测,到2019年WSAN市场将有近10倍的增长,规模达18亿美元。
WSAN为分布式监视与控制设备的部署提供了一种简单经济的方法,避免了有线系统所必需的昂贵改进。但对应用开发人员来说,射频设计经验的缺乏和对众多无线协议的困惑将会是他们面临最大的挑战。本文讨论了无线传感器网络和协议的一些基本概念、组成无线传感器的重要元件以及在使用方面的一些重要设计考虑因素。
无线传感器与致动器网络(图1)是随机散布的一些小型设备的集合,主要提供三大功能:监视物理与环境条件,如温度、压力、光线和温度,而且通常是实时的;操作开关、电机或致动器等调控这些条件的设备;通过无线网络提供高效可靠的通信。
图1:无线传感器/致动器网络。
最后一种功能的实现对WSAN来说是最独特的。由于WSAN是为低流量监视与控制应用设计的,因此没有必要支持像Wi-Fi数据网络那么高的数据吞吐量要求。典型的WSAN空中数据速率范围从20kbps至1Mbps。因此WSAN节点设备可以工作在低得多的功耗下,允许节点采用电池供电,并且物理尺寸可以很小。 WSAN通常具有自组织和自愈特性。自组织网络允许新节点自动加入网络,不需要人工干预。自愈网络允许节点重新配置其链路关联性,寻找绕道故障或断电节
点的替代路径。这些功能的实现方式具体取决于网络管理协议和网络拓扑,最终也决定了网络的灵活性、可扩展性、成本和性能。
无线传感器网络使用三种基本的网络拓扑:点到点、星形(点到多点)或网状(图2)。点到点只是两个点之间的一条专用链路,实际上根本算不上网络。星形网络是点到点链路的汇聚,中心主节点管理固定数量的从节点,并用作所有上行通信的管道。
图2:基本的无线网络拓扑。
主节点也可以链接其它主节点,从而将星形网络扩展为各种不同的配置,有时这样的配置被称为群集或群集树网络(图3)。
图3:群集树式的扩展星形网络。
星 形拓扑的缺点之一是主节点是单个故障点。如果主节点发生故障,整个子网络都将瘫痪。在网状拓扑中,每个节点都有多条路径到达其它节点,因此可以提供最大的 弹性和灵活性。大多数实用的网状网络使用伪网格类型,采用的是支持路由的对等通信链路。消息利用多跳路由算法在网络中传输,而且这种算法专门针对最低时延 或最低功耗作了优化。由于网状网中的每个节点必须通过路由表了解网络中的其它节点,因此网状网中每个节点要求的内存和处理开销比较高。 不同协议间的差异
网络管理协议将决定支持哪种拓扑,当节点加入或离开时网络如何进行重新配置。用于网络组建、自动配置、路由等的详细过程与具体协议有关。虽然像ZigBee和 WirelessHART等一些WSAN协议已被广泛采纳,但其前景不是很明朗。因为有数十种竞争性且没有互操作性的协议存在,而且每种协议都有各自的优 缺点,其中的许多协议是私有协议。虽然采用流行工业标准支持的协议可以保证多供应商的互操作性,但一些私有协议可以提供满足特定性能参数的解决方案,如简 单性、网络弹性或安全性。另一方面,私有协议可能限制在未来网络扩展时只能用一家供应商的产品。
与用于数据通信的Wi-Fi不同,WSAN不可能有一种普遍适用的标准。相反,在特殊应用领域中某些协议已经成为事实上的标准,因为它们是最适合的。例如ZigBee,凭借对联盟成员来说有近5亿美元的美国智能电网市场,无疑将成为智能能源和家庭/楼宇自动化应用的主导标准。
WirelessHART 是工业自动化应用中使用的已有(有线)高速可寻址远程传感(HART)协议的扩展,由HART联盟提供支持。与WirelessHART有关的 ISA100.11a同样用于工业应用,另外它还能传送Modbus、Profibus和Fieldbus协议。也许6LoWPAN是最有吸引力的一种协 议,该协议由小对象IP(IPSO)联盟推荐,可将小型嵌入式设备适配进IPv6网络。6LoWPAN协议定义了特殊的IP适配层,非常适合资源受限制的小内存设备使用,使这些设备具有互联网访问功能。 2010年5月,ZigBee联盟和IPv6论坛与IPSO联盟建立了战略性的合作伙伴关系,旨在加速IP联网型智能对象的普及,这是向物联网发展方面迈出的一大步。由于传感器节点需要靠近被监视或控制的环境变量附近,因此节点设计一般都要针对小型物理尺寸和低功耗进行优化。传感器节点中的基本设计元件包括微控制器、内存、射频通信、传感器/致动器接口、电源以及包含网络协议堆栈的固件(图4)。
图4:传感器节点框图。
堆栈是在MCU上 执行的软件模块的一个集合,用于实现某种特定的协议。基于上述理由,堆栈是传感器设计中的一个重要组成部分。由于传感器节点中使用的MCU类型一般是低功 耗、资源受限制的器件,因此协议堆栈必须小巧高效,并且通常挤在与传感器应用节点共享的64KB至128KB的MCU内部存储器中。 可 以围绕各种性能需求对堆栈进行优化,如标准兼容性、功效、执行速度、内存容量等。折衷方案的数量似乎无穷无尽,这正是有这么多协议堆栈选项可供选择的原 因。这些堆栈也可以针对特定的MCU架构进行优化,但是针对特定MCU的特定堆栈的可用性,可能会限制器件的选择。MCU供应商一般都向使用他们器件的客 户免费提供经过测试和认证的堆栈,包括像ZigBee和6LoWPAN这样与标准兼容的堆栈,以及他们自己(通常是更简单)的私有堆栈。
在典型无线传 感器/致动器节点的中心是小型超低功耗的微控制器(MCU)。由于传感器节点通常采用电池供电,因此必须仔细管理MCU功耗。大多数WSAN协议都能将节 点配置为较短的活动工作占比。每隔几分钟,睡眠节点会苏醒以执行仅数十毫秒的任务。由于MCU在工作寿命内有99.9%的时间处于最低功耗(睡眠)模式, 因此睡眠模式下使用的微小电流是一个关键参数。
目前市场上的许多MCU都提供1?A以下的睡眠电流。虽然睡眠模式电流很重 要,但在活动模式下的低功耗以及处理速度也同样重要。MCU必须能够快速苏醒,能够快速执行目标任务,其中包括通信协议处理,然后在尽可能短的时间内返回 睡眠模式,最大限度地减少活动模式下花的时间。
如图5所示,传感器的总平均功耗及最终电池寿命将取决于本身功耗指标以及活动/睡眠占比的贡献。
图5:平均功耗与睡眠/活动占比的关系。
给无线传感器节点供电的一种越来越有吸引力的方法是从传感器环境中收集环境能量。即使一个经过仔细设计的传感器可以用单个CR2032型锂电池工作数年时间,维护具有数百个传感器的大型WSAN网络中的电池也会是一个巨大的挑战。 微型能量收集设备可以发挥自供电、零维护传感器的巨大潜能。鉴于目前超低功耗MCU的极小能量要求,现实世界中有数量惊人的环境能量资源能用来转换出足
够的电能供传感器节点使用。常见的2in2光伏电池可以从低至300lux的正常照明办公室环境中连续输出50?W的能量。
利用压电效应的小型振动能量收集器可以调整到收集50Hz-200Hz范围内小于1gRMS的振动,并提供毫瓦级的连续功率。当与小型可充电电池结合使用时,这些能量收集器能为低工作占比的传感器节点提供足够强劲的电源。高功效的射频收发器是无线传感器设计中的另外一个关键元件。就像MCU一样,收发器的功耗特性对电池寿命有很大影响。收发器应具有低功耗睡眠模式、低接收功率、可编程发射功率和唤醒定时器功能。
集成式收发器现在已经很常用,通常是在单个小型封装中包括所有重要的射频电
滤波器、放大器、 混频器、调制器/解调器等。这些器件支持覆盖1GHz路——
以下和2.4GHz ISM频段的频率选项,以及包括FSK、OOK、BPSK和QPSK在内的许多调制选项。收发器数据手册会标明不同数据速率下的接收灵敏度和发射功率(单 位是dBm,dBm = 10log(P/1mW))。这两种参数之间的差异可以为总的射频链路预算及网络中的节点至节点距离提供一阶近似值,
链路预算为85dB的2.45GHz链路在室外视距应用中可以达200米距离。由于射频吸收和传播损耗影响,同样的链路在室内的有效距离可能缩短到10米。传感器节点还需要一副天线,可以是外部安装型天线、表贴芯片型天线或印刷电路板设计中的嵌入式天线。
虽然这部分电路对WSAN节点设计来说非常重要,但许多微型射频电路设计可能使这部分设计变得复杂和困难。幸运的是,IC和模块供应商提供的产品可以极大地简化这个任务。
一 个特别值得一提的WSAN器件是最早于2003年定义的IEEE Std 802.15.4无线电装置。这是一种短距离的扩频无线电装置,采用三个ISM频段中的一个,并有多种调制选项,可以在16个信道中提供高达 250kbps的数据速率。该装置专门设计用于支持大型、低功耗、低数据速率的网状网络,是ZigBee、WirelessHART和6LoWPAN以及较早前提及的许多私有协议的参考性无线电装置标准。 IEEE标准规定了物理层(PHY)和介质访问控制层(MAC)的要求,将上面的网络管理层定义留给了各个不同的感兴趣方,以满足他们特殊的应用需求(图6)。
图6:使用IEEE Std 802.15.4的协议堆栈。
2.45GHz 物理层采用的是基本上全球都免许可的频段,并使用O-QPSK调制和带32位伪随机码序列的直接序列扩展频谱(DSSS)扩频技术。这种技术组合对窄带干 扰具有一定的弹性,有助于减轻多径衰落引起的信号抵消效应。这个IEEE标准在定义时专门考虑到了与同样工作在2.4GHz ISM频段工作的802.11和蓝牙设备的共存。有多家IC供应商提供独立的802.15.4兼容无线电器件,小批量时的价格不到3美元。
芯片行业正在积极地提供更多针对WSAN应用优化了的集成式SoC器件。这些SoC一般集成有像ARM Cortex-M3这样的低功耗MCU以及像IEEE Std 802.15.4无线电装置这样的标准射频通信器件。如今最新的趋势是提供预先编程了ROM型协议堆栈的器件,以进一步简化软件开发任务。模块供应商做得更多,在小型集成式模块中提供包括MCU、无线电器件、协议堆栈在内的完整无线模块,在许多情况下甚至包括天线,并且这些模块已经通过测试,完全满足FCC/ETSI要求。 与 昂贵的内部定制设计相比(假设射频设计和测试功能也在内部做),模块可以提供快得多的产品上市路径,并且可以极大地节省成本。当完整模块价格在10美元至 20美元之间、基本元件材料清单占2/3时,从定制设计的制造与购买成本分析可以看出,在超过5万片批量之前可能达不到很好的经济效益。 总之,无线传感器/致动器网络提供了实现更加智能控制的经济便利方法,但系统开发人员面临着众多的折衷与选项。网络在动态变化下的灵活性、性能和鲁棒性都将取决于网络架构和协议。
由 于没有统一的WSAN协议,开发人员必须从一系列容易令人困惑的协议选项中作出选择。像ZigBee、WirelessHART和6LoWPAN等协议在 某类应用中得到了较为广泛的采纳。 幸运的是,今天的元件供应商支持各种选项,包括用于超低功耗MCU且预先测试过的软件堆栈、复杂的兼容标准的射频IC甚至为WSAN应用设计的完整集成和 预先认证的现成模块。
表1:IEEE Std 802.15.4-2006 PHY选项。
范文二:传感器的组成及分类
传感器的组成及分类 一、传感器的组成
二、传感器的分类
1.按输入量分类
物理传感器:温度传感器、压力传感器、位移传感器
化学量传感器
生物量传感器
2.按输出信号形式分类
分为模拟式、开关式和数字式。
3.按转换原理分类
结构型:利用机械构件在动力场或磁场的作用下产生变形或位移,将外界被测参数转换成相应的电阻、电感、电容等物理量。是利用物理学运动定律或电磁定律实现的。
物性型:利用材料的固态物理特性及其各种物理、化学效应(物质定律即胡克定律、欧姆定律)实现非电量的转换,是以半导体、电解质、铁电体等作为敏感材料的固态器件。
复合型:有结构型传感器和物性型传感器组合而成的,兼有两者的特征,如电阻式、光电式、热敏、气敏、湿敏、磁敏等。
三、传感器的基本特性
1.传感器的静态特性
静态特性表示传感器被测量的值处于稳定状态时的输出与输入的关系。它主要包括灵敏度、线性堵、迟滞性、重复性、分辨力以及零漂等。
2.传感器的动态特性
根据不同输入变化规律来考察传感器的响应。
范文三:传感器的定义和组成
传感器的定?义和组成
1(传感器的定?义
广义地说,传感器是指?能感知某一?物理量、化学量或生?物量等的信?息,并能将之转?化为可以加?以利用的信?息的装置。人的五官就?可广义地看?作传感器,又例如测量?仪器就是将?被测量转化?为人们可感?知或定量认?识的信号的?传感器。传感器狭义?的定义是:感受被测量?,并按一定规?律将其转化?为同种或别?种性质的输?出信号的装?置。中华人民共?和国国家标?准GB76?65,1987对?传感器(trans?ducer?/senso?r)的定义是:能感受规定?的被测量并?按一定规律?转换成可用?输出信号的?器件或装置?。由于电信号?易于保存、放大、计算、传输,且是计算机?唯一能够直?接处理的信?号,所以,传感器的输?出一般是电?信号(如电流、电压、电阻、电感、电容、频率等)。
2(传感器的组?成
传感器的作?用一般是把?被测的非电?量转换成电?量输出,因此它首先?应包含一个?元件去感受?被测非电量?的变化。但并非所有?的非电量都?能利用现有?手段直接变?换成电量,这是需要将?被测非电量?先变换成易?于变换成电?量的某一中?间非电量。传感器中完?成这一功能?的元件称为?敏感元件(或预变换器?)。例如应变式?压力传感器?的作用是将?输入的压力?信号变换
,它的敏感元?件是一个弹?性膜片,其作用是将?压力转换成?膜片的变形?。 成?电压信号输?出
传感器中将?敏感元件输?出的中间非?电量转换成?电量输出的?元件称为转?换元件(或转换器),它是利用某?种物理的、化学的、生物的或其?他的效应来?达到这一目?的的。例如应变式?压力传感器?的转换元件?是一个应变?片,它利用电阻?应变效应(金属导体或?半导体的电?阻随着它所?受机械变形?的大小而发?生变化的现?象),将弹性膜片?的变形转换?为电阻值的?变化。
所以,敏感元件(sensi?ng eleme?nt)是能直接感?受或响应被?测量的部分?;转换元件(trans?ducti?on eleme?nt)是将敏感元?件感受或响?应的被测量?转换成适于?传输和测量?的电信号部?分。需要说明的?是,有些被测非?电量可以直?接被变换为?电量,这时传感器?中的敏感元?件和转换元?件就合二为?一了。例如热电阻?温度传感器?利用铂电阻?或铜电阻,可以直接将?被测温度转?换成电阻值?的输出。
转换元件输?出的电量常?常难以直接?进行显示、记录、处理和控制?,这时需要将?其进一步变?换成可直接?利用的电信?号,而传感器中?完成这一功?能的部分称?为测量电路?。测量电路也?称为信号调?节与转换电?路,它是把传感?元件输出的?电信号转换?为便于显示?、记录、处理和控制?的有用电信?号的电路。例如应变式?压力传感器?中的测量电?路是一个电?桥电路,它可以
将应?变片输出的?电阻值转换?为一个电压?信号,经过放大后?即可推动记?录、显示仪表的?工作。测量电路的?选择视转换?元件的类型?而定,经常采用的?有电桥电路?、脉宽调制电?路、振荡电路、高阻抗输入?电路等。
综上所述,传感器一般?由敏感元件?、转换元件、测量电路和?辅助电源四?部分组成,如图1-1所示。其中敏感元?件和转换元?件可能合二?为一,而有的传感?器不需要辅?助电源。
图1-1 传感器的组?成框图
可见,传感器技术?包括敏感元?件技术(新材料和新?工艺等)、测量电路技?术、信号转换技?术和信号处?理技术等等 ?。
范文四:传感器的定义与组成
传感器的定义与组成
我国国家标准(GB7665-87)中说,传感器(Transducer/Sensor)的定义是:"能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置"。我们的定义是:传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。
这一定义包含了以下几方面的意思:①传感器是测量装置,能完成检测任务;②它的输出量是某一被测量,可能是物理量,也可能是化学量、生物量等;③它的输出量是某种物理量,这种量要便于传输、转换、处理、显示等等,这种量可以是气、光、电量,但主要是电量;④输出输入有对应关系,且应有一定的精确程度。
关于传感器,我国曾出现过多种名称,如发送器、传送器、变送器等,它们的内涵相同或相似,所以近来已逐渐趋向统一,大都使用传感器这一名称了。从字面上可以作如下解释:传感器的功用是一感二传,即感受被测信息,并传送出去。关于传感器,我国曾出现过多种名称,如发送器、传送器、变送器等,它们的内涵相同或相似,所以近来已逐渐趋向统一,大都使用传感器这一名称了。从字面上可以作如下解释:传感器的功用是一感二传,即感受被测信息,并传送出去。
传感器一般由敏感元件、转换元件、基本转换电路三部分组成,组成框图见图0-1。
敏感元件:它是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。图0-2是一种气体压力传感器的示意图。膜盒2的下半部与壳体1固接,上半部通过连杆与磁芯4相连,磁芯4置于两个电感线圈3中,后者接入转换电路5。这里的膜盒就是敏感元件,其外部与大气压力 相通,内部感受被测压力 当 变化时,引起膜盒上半部移动,即输出相应的位移量。
转换元件:敏感元件的输出就是它的输入,它把输入抟换成电路参量。
在图0-2中,转换元件是可变电感线圈3,它把输入的位移量转换成电感的变化。
基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。传感器只完成被测参数至电量的基本转换,然后输入到测控电路,进行放大、运算、处理等进一步转换,以获得被测值或进行过程控制。
实际上,有些传感器很简单,有些则较复杂,大多数是开环系统,也有些是带反馈的闭环系统。
最简单的传感器由一个敏感元件(兼转换元件)组成,它感受被测量时直接输出电量,如热电偶就是这样。如图0-3所示,
两种不同的金属材料 和 ,一端联接在一起,放在被测温度 中,另一端为参考,温度为 , 则在回路中将产生一个与温度 、 有关的电动势,从而进行温度测量。有些传感器由敏感元件和转换元件组成度
如图0-4所示的压电式加速度传感器,其中质量块 是敏感元件,压电片(块)是转换元件。因转换元件的输出已是电量,无需转换电路。
有些传感器,转换元件不只一个,要经过若干次转换。
敏感元件与转换元件在结构上常是装在一起的,而转换电路为了减小外界的影响也希望和它们装有一起,不过由于空间的限制或者其它原因,转换电路常装入电箱中。尽管如此,因为不少传感器要在通过转换电路后才能输出电量信号,从而决定了转换电路是传感器的组成环节之一
传感器的分类及对它的一般要求
传感器是知识密集、技术密集的行业,它与许多学科有关,它的种类十分繁多。为了很好地掌握它、应用它,需要有一个科学的分类方法。
下面将目前广泛采用的分类方法作一简单介绍。
首先,按传感器的工作机理,可分为物理型、化学型、生物型等。
其次,按构成原理,可分为结构型与物性型两大类。
本课程主要讲授物理型传感器。在物理型传感器中,作为传感器工作物理基础的基本定律有场的定律、物质定律、守恒定律和统计定律等。
结构型传感器是利用物理学中场的定律构成的,包括动力场的运动定律,电磁场的电磁定律等。物理学中的定律一般是以方程式给出的。对于传感器来说,这些方程式也就是许多传感器在工作时的数学模型。这类传感器的特点是传感器的工作原理是以传感器中元件相对位置变化引起场的变化为基础,而不是以材料特性变化为基础。
物性型传感器是利用物质定律构成的,如虎克定律、欧姆定律等。物质定律是表示物质某种客观性质的法则。这种法则,大多数是以物质本身的常数形式给出。这些常数的大小,决定了传感器的主要性能。因此,物性型传感器的性能随材料的不同而异。例如,光电管就是物性型传感器,它利用了物质法则中的外光电效应。显然,其特性与涂覆在电极上的材料有着密切的关系。又如,所有半导体传感器,以及所有利用各种环境变化而引起的金属、半导体、陶瓷、合金等性能变化的传感器,都属于物性型传感器。
此外,也有基于守恒定律和统计定律的传感器,但为数较少。
第三,根据传感器的能量转换情况,可分为能量控制型传感器和能量转换型传感器。
能量控制型传感器,在信息变化过程中,其能量需要外电源供给。如电阻、电感、电容等电路参量传感器都属于这一类传感器。基于应变电阻效应、磁阻效应、热阻效应、光电效应、霍尔效应等的传感器也属于此类传感器。
能量转换型传感器,主要由能量变换元件构成,它不需要外电源。如基于压电效应、热电效应、光电动势效应等的传感器都属于此类传感器。
第四,按照物理原理分类,可分为:1.电参量式传感器。包括电阻式、电感式、电容式等三个基本型式。2.磁电式传感器。包括磁电感应式、霍尔式、磁栅式等。3.压电式传感器。
4.光电式传感器。包括一般光电式、光栅式、激光式、光电码盘式、光导纤维式、红外式、摄象式等。5.气电式传感器。6.热电式传感器。7.波式传感器。包括超声波式、微波式等。
8.射线式传感器。9.半导体式传感器。10.其它原理的传感器等。
有些传感器的工作原理具有两种以上原理的复合形式,如不少半导体式传感器,也可看成电参量式传感器。
第五,可以按照传感器的用途来分类,例如位移传感器、压力传感器、振动传感器、温度传感器等等。
另外,根据传感器输出是模拟信号还是数字信号,可分为模拟传感器和数字传感器;根据转换过程可逆与否,可分为双向传感器和单向传感器等。
各种传感器,由于原理、结构不同,使用环境、条件、目的不同,其技术指标也不可能相同。但是有些一般要求,却基本上是共同的,这就是:①可靠性;②静态精度;③动态性能;④量程;⑤抗干扰能力;⑥通用性;⑦轮廓尺寸;⑧成本;⑨能耗;⑩对被测对象的影响等。
可靠性、静态精度、动态性能、量程的要求是不言而喻的。传感器是通过检测功能来达到各种技术目的的,很多传感器要在动态条件下工作,精度不够、动态性能不好或出现故障,整个工作就无法进行。在某些系统中或设备上往往装上许多传感器,若有一个传感器失灵,会影响全局。所以传感器的工作可靠性、静态精度和动态性能是最基本的要求。
抗干扰能力也是十分重要的,因为使用现场总会存在这样那样的干扰,总会出现各种意想不到的情况,因此要求传感器应有这方面的适应能力,同时还应包括在恶劣环境下使用的安全性,通用性主要是指传感器应可用于各种不同的场合,以免一种应用要搞一种设计,达到事半功倍的目的。其它几项要求不言自明,不再赘述
范文五:传感器的组成与分类
一、传感器的定义和组成
传感器又称变换器、探测器和检测器,是获取信息的工具。在国家标准《传感器通用术语》中,传感器的定义为:能感受或响应规定的被测量并按照一定规律转换成可用输出信号的器件或装置。传感器通常由直接响应于被测量的敏感元件和产生可用输出的转换元件以及相应的基本转换电路所组成。
1、敏感元件
直接感受被测量,并以确定关系输出某一物理量。如弹性敏感元件将力转换为位移或应变输出、
2、转换元件
将敏感元件输出的非电物理量(如位移、应变、光强等)转换成电路参数(如电阻、电感等)或电量。
3、基本转换电路
将电路参数转换成便于测量的电量,如电压、电流、频率等。
通常传感器输出信号一般都很微弱,需要有信号调节与转换电路将其放大或变换为容易传输、处理、记录和显示的形式。随着半导体器件与集成技术在传感器中的应用,传感器的信号调节与转换可以安装在传感器的壳体里或与敏感元件一起集成在同一芯片上。因此,信号调节与转换电路以及所需电源都应作为传感器的组成部分。
二、传感器的分类
传感器干差万别,种类繁多(分类方法也不尽相同(常用的分类方法名下面几种。
1、按能量供给形式分类
按能量供给形式分无源传感器和有源传感器。无源传感器只是被动地接收来自被测物体的信息;有源传感器则可以有意识地向被测物体施加某种能食,并将来自被测物体的信息变换为便于检测的能量后再进行检测。
2、从功能角度分类
可将传感器分为:电传感器、磁传感器、位移传感器、压力传感器、振动传感器、声传感器、速度传感器、加速度传感器、流量传感器、流速传感器、真空度传感器、温度传感器、湿度传感器、光传感器、射线传感器、分析传感器、仿生传感器、气体传感器和离子传感器等。
苏州雨泽仪器有限公司 网址:http://www.yiqiw.net ;http://www.szarain.com 电话:0512-65508896
3、从使用材料分类
可将传感器分为陶瓷传感器、半导体传感器、复合材料传感器、金属材料传感器、高分子材料传感器。
4、从技术特点分类
可将传感器分为电传送、气传送或光传送、位式作用或连续作用、有触点或无触点、模拟式或数字式、常规式或灵巧式、接胜式或非接触式、普通型、隔爆型或本安型(本质安全型)等传感器。 苏州雨泽仪器有限公司 网址:http://www.yiqiw.net ;http://www.szarain.com 电话:0512-65508896
转载请注明出处范文大全网 » 无线传感器网络和协议概念、组