范文一:爆炸极限范围[最新]
爆炸极限的意义
可燃物质(可燃气体、蒸气和粉尘)与空气(或氧气)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或爆炸浓度极限。例如一氧化碳与空气混合的爆炸极限为12.5%,80%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为爆炸下限和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限时不爆炸也不着火;在高于爆炸上限同样不燃不爆。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。
影响爆炸极限的因素
混合系的组分不同,爆炸极限也不同。同一混合系,由于初始温度、系统压力、惰性介质含量、混合系存在空间及器壁材质以及点火能量的大小等的都能使爆炸极限发生变化。一般规律是:混合系原始温度升高,则爆炸极限范围增大,即下限降低、上限升高。因为系统温度升高,分子内能增加,使原来不燃的混合物成为可燃、可爆系统。系统压力增大,爆炸极限范围也扩大,这是由于系统压力增高,使分子间距离更为接近,碰撞几率增高,使燃烧反应更易进行。压力降低,则爆炸极限范围缩小;当压力降至一定值时,其上限与下限重合,此时对应的压力称为混合系的临界压力。压力降至临界压力以下,系统便不成为爆炸系统(个别气体有反常现象)。混合系中所含惰性气体量增加,爆炸极限范围缩小,惰性气体浓度提高到某一数值,混合系就不能爆炸。容器、管子直径越小,则爆炸范围就越小。当管径(火焰通道)小到一定程度时,单位体积火焰所对应的固体冷却表面散出的热量就会大于产生的热量,火焰便会中断熄灭。火焰不能传播的最大管径称为该混合系的临界直径。点火能的强度高、热表面的面积大、点火源与混合物的接触时间不等都会使爆炸极限扩大。除上述因素外,混合系接触的封闭外壳的材质、机械杂质、光照、表面活性物质等都可能影响到爆炸极限范围。
与可燃物的危害
可燃性混合物的爆炸极限范围越宽、爆炸下限越低和爆炸上限越高时,其爆炸危险性越大。这是因为爆炸极限越宽则出现爆炸条件的机会就多;爆炸下限越低则可燃物稍有泄漏就会形成爆炸条件;爆炸上限越高则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器或管道里逸出,重新接触空气时却能燃烧,仍有发生着火的危险。
表示
爆炸极限的表示方法
气体或蒸汽爆炸极限是以可燃性物质在混合物中所占体积的百分比(%)来表示的,如氢与空气混合物的爆炸极限为4%,75%。可燃粉尘的爆炸极限是以可燃性物质在混合物中所占体积的质量比g/m^3来表示的,例如铝粉的爆炸极限为40g/m^3。 可燃性蒸气的爆炸极限值
可燃性蒸气的爆炸极限值是由可燃液体表面产生的蒸气浓度决定的。对于可燃液体而言,爆炸下限浓度对应的闪点温度又可以称为爆炸下限温度;爆炸上限浓度对应的液体温度又可以称为爆炸上限温度。
可燃气体或蒸气 分子式 爆炸极限(%)
可燃气体或蒸气 分子式 爆炸极限(%)
可燃气体 下限 上限
氢气 H2 4.0 74.2
氨 NH3 5.5 27 一氧化碳 CO 12.5 74.2
甲烷 CH4 5.3 14
乙烷 C2H6 3.0 12.5
乙烯 C2H4 3.1 32
乙炔 C2H2 2.2 81
苯 C6H6 1.4 7.1
甲苯 C7H8 1.4 6.70 环氧乙烷 C2H4O 3.0 80.0
乙醚 (C2H5)O 1.9 48.0
乙醛 CH3CHO 4.1 55.0
丙酮 (CH3)2CO 3.0 11.0
乙醇 C2H5OH 4.3 19.0
甲醇 CH3OH 5.5 36 醋酸乙酯 C4H8O2 2.5 9 常用可燃气体爆炸极限数据表
补注
范文二:爆炸极限范围
爆炸极限的意义
可燃物质 (可燃气体 、蒸气和 粉尘 ) 与空气 (或 氧气 ) 必须在一定的浓度范围内均匀混合, 形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或 爆炸浓度极限 。 例如 一氧化碳 与空气混合的爆炸极限为 12.5%~80%。 可燃性混合物能够发生爆炸的最低浓度和 最高浓度, 分别称为 爆炸下限 和爆炸上限, 这两者有时亦称为着火下限和着火上限。 在低于 爆炸下限时不爆炸也不着火; 在高于爆炸上限同样不燃不爆。 这是由于前者的可燃物浓度不 够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足, 导致火焰不能蔓延的 缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力 (即根据完全燃烧 反应方程式计算的浓度比例 ) 。
影响爆炸极限的因素
混合系的组分不同,爆炸极限也不同。同一混合系,由于初始温度、系统压力、惰性介 质含量、 混合系存在空间及器壁材质以及点火能量的大小等的都能使爆炸极限发生变化。 一 般规律是:混合系原始温度升高,则爆炸极限范围增大,即下限降低、上限升高。因为系统 温度升高, 分子内能 增加,使原来不燃的混合物成为可燃、可爆系统。系统压力增大,爆炸 极限范围也扩大,这是由于系统压力增高,使分子间距离更为接近,碰撞几率增高,使燃烧 反应更易进行。 压力降低, 则爆炸极限范围缩小; 当压力降至一定值时, 其上限与下限重合, 此时对应的压力称为混合系的 临界压力 。 压力降至临界压力以下, 系统便不成为爆炸系统 (个 别气体有反常现象 ) 。混合系中所含惰性气体量增加,爆炸极限范围缩小,惰性气体浓度提 高到某一数值,混合系就不能爆炸。容器、管子直径越小,则爆炸范围就越小。当管径 (火 焰通道 ) 小到一定程度时,单位体积火焰所对应的固体冷却表面散出的 热量 就会大于产生的 热量, 火焰便会中断熄灭。 火焰不能传播的最大管径称为该混合系的临界直径。 点火能的强 度高、 热表面的面积大、 点火源与混合物的接触时间不等都会使爆炸极限扩大。 除上述因素 外,混合系接触的封闭外壳的材质、 机械杂质、光照、表面活性物质等都可能影响到爆炸极 限范围。
与可燃物的危害
可燃性混合物的爆炸极限范围越宽、 爆炸下限越低和爆炸上限越高时, 其爆炸危险性越 大。 这是因为爆炸极限越宽则出现爆炸条件的机会就多; 爆炸下限越低则可燃物稍有泄漏就 会形成爆炸条件; 爆炸上限越高则有少量空气渗入容器, 就能与容器内的可燃物混合形成爆 炸条件。应当指出, 可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸, 但当它从 容器或管道里逸出,重新接触空气时却能燃烧,仍有发生着火的危险。
表示
爆炸极限的表示方法
气体或蒸汽爆炸极限是以可燃性物质在混合物中所占体积的百分比 (%)
来表示的,如氢 与空气混合物的爆炸极限为 4%~75%。可燃粉尘的爆炸极限是以可燃性物质在混合物中所 占体积的质量比 g/m^3来表示的,例如铝粉的爆炸极限为 40g/m^3。
可燃性蒸气的爆炸极限值
可燃性蒸气的爆炸极限值是由 可燃液体 表面产生的蒸气浓度决定的。对于可燃液体而 言, 爆炸下限浓度对应的 闪点 温度又可以称为爆炸下限温度; 爆炸上限浓度对应的液体温度 又可以称为爆炸上限温度。
可燃气体或蒸气 分子式 爆炸极限 (%)
可燃气体或蒸气 分子式 爆炸极限 (%)
可燃气体 下限 上限
氢气 H2 4.0 74.2
氨 NH3 5.5 27
一氧化碳 CO 12.5 74.2
甲烷 CH4 5.3 14
乙烷 C2H6 3.0 12.5
乙烯 C2H4 3.1 32
乙炔 C2H2 2.2 81
苯 C6H6 1.4 7.1
甲苯 C7H8 1.4 6.70
环氧乙烷 C2H4O 3.0 80.0
乙醚 (C2H5)O 1.9 48.0
乙醛 CH3CHO 4.1 55.0
丙酮 (CH3)2CO 3.0 11.0
乙醇 C2H5OH 4.3 19.0
甲醇 CH3OH 5.5 36
醋酸乙酯 C4H8O2 2.5 9
常用可燃气体爆炸极限数据表
补注
1. 由于百度无法显示图片, 因此请需要了解爆炸极限计算方法的同学根据参考资料来了 解。 2. 题图为“乙烷 -氧气 – 氮气体系的爆炸极限范围” 3. 爆炸极限范围以外, 不会发生爆炸!
范文三:郁-爆炸极限及常见气体的爆炸极限范围
常见可燃性气体爆炸极限
气体名称 分子式 下限% 上限%
H 4 75 氢气 2
NH 15.5 27 氨气 3
CO 12.5 74.2 一氧化碳
CH 5.3 14 甲烷 4CH 3 12.5 乙烷 26CH 3.1 32 乙烯 24CH 2.2 81 乙炔 22CH 1.4 7.1 苯 66CH 1.4 6.7 甲苯 78CHO 3.0 80.0 环氧乙烷 24
(CH)O 1.9 48.0 乙醚 25
CHCHO 4.1 55.0 乙醛 3
(CH)CO 3.0 11.0 丙酮 32
CHOH 4.3 19.0 乙醇 25
CHOH 5.5 36 甲醇 3
CHO 2.5 9 醋酸乙酯 482
5 15 天然气
三氯氢硅 6.9 70
- 1 -
化学分子式/在空气中的爆炸极下限上限
(V/V) (V/V) 气体名称 限 (体积分数) / %
H2 4.0 75.6 氢气
H2S 4.3 45.0 硫化氢
C2H2 1.5 100.0 乙炔
CO 12.5 74.0 一氧化碳
可燃气体(蒸气)与空气的混合物,并不是在任何浓度下,遇到火源都能爆炸,而必须是在一定的浓度范围内遇火源才能发生爆炸。这个遇火源能发生爆炸的可燃气浓度范围,称为可燃气的爆炸极限(包括爆炸下限和爆炸上限)。不同可燃气(蒸气)的爆炸极限是不同的,如氢气的爆炸极限是4.0,,75.6,(体积浓度),意思是如果氢气在空气中的体积浓度在4.0,,75.6,之间时,遇火源就会爆炸,而当氢气浓度小于4.0,或大于75.6,时,即使遇到火源,也不会爆炸。甲烷的爆炸极限是5.0,,15,意味着甲烷在空气中体积浓度在5.0,,15,之间时,遇火源会爆炸,否则就不会爆炸。
可燃粉尘爆炸极限的概念与可燃气爆炸极限是一致的。
爆炸极限一般用可燃气(粉尘)在空气中的体积百分数表示(,),也可以用可燃气(粉尘)的重量百分数表示(克,米*或是毫克,升)。
爆炸极限是一个很重要的概念,在防火防爆工作中有很大的实际意义:
(1)它可以用来评定可燃气体(蒸气、粉尘)燃爆危险性的大小,作为可燃气体分级和确定其火灾危险性类别的依据。我国目前把爆炸下限小于是10,的可燃气体划为一级可燃气体,其火灾危险性列为甲类。
- 2 -
(2)它可以作为设计的依据,例如确定建筑物的耐火等级,设计厂房通风系统等,都需要知道该场所存在的可燃气体(蒸气、粉尘)的爆炸极限数值。
(3)它可以作为制定安全生产操作规程的依据。在生产、使用和贮存可燃气体(蒸气、粉尘)的场所,为避免发生火灾和爆炸事故,应严格将可燃气体(蒸气、粉尘)的浓度控制在爆炸下限以下。为保证这一点,在制定安全生产操作规程时,应根据可燃气(蒸气、粉尘)的燃爆危险性和其它理化性质,采取相应的防范措施,如通风、置换、惰性气体稀释、检测报警等。
什么是爆炸极限
(一)定义
可燃物质(可燃气体、蒸气、粉尘或纤维)与空气(氧气或氧化剂)均匀混合形成爆炸性混合物,其浓度达到一定的范围时,遇到明火或一定的引爆能量立即发生爆炸,这个浓度范围称为爆炸极限(或爆炸浓度极限)。形成爆炸性混合物的最低浓度称为爆炸浓度下限,最高浓度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。
可燃性混合物有一个发生燃烧和爆炸的浓度范围,即有一个最低浓度和最高浓度,混合物中的可燃物只有在其之间才会有燃爆危险。
可燃物质的爆炸极限受诸多因素的影响。如可燃气体的爆炸极限受温度、压力、氧含量、能量等影响,可燃粉尘的爆炸极限受分散度、湿度、温度和惰性粉尘等影响。
可燃气体和蒸气爆炸极限是以其在混合物中所占体积的百分比(,)来表示的,表5—3中一氧化碳与空气的混合物的爆炸极限为12(5,,80,。可燃粉尘的爆炸极限是以其在混合物中所占的比重(g,m3)来表示的,例如,木粉的爆炸下限为409,m3,煤粉的爆炸下限为359,m3可燃粉尘的爆炸上限,因为
- 3 -
浓度太高,大多数场合都难以达到,一般很少涉及。例如,糖粉的爆炸上限为135009,m3,煤粉的爆炸上限为135009,m3,一般场合不会出现。可燃性混合物处于爆炸下限和爆炸上限时,爆炸所产生的压力不大,温度不高,爆炸威力也小。当可燃物的浓度大致相当于反应当量浓度(表中的30,)时,具有最大的爆炸威力。反应当量浓度可根据燃烧反应式计算出来。
可燃性混合物的爆炸极限范围越宽,其爆炸危险性越大,这是因为爆炸极限越宽则出现爆炸条件的机会越多。爆炸下限越低,少量可燃物(如可燃气体稍有泄漏)就会形成爆炸条件;爆炸上限越高,则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。生产过程中,应根据各可燃物所具有爆炸极限的不同特点,采取严防跑、冒、滴、漏和严格限制外部空气渗入容器与管道内等安全措施。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器里或管道里逸出,重新接触空气时却能燃烧,因此,仍有发生着火的危险。
(二)爆炸反应当量浓度的计算
爆炸性混合物中的可燃物质和助燃物质的浓度比例恰好能发生完全化合反应时,爆炸所析出的热量最多,产生的压力也最大,实际的反应当量浓度稍高于计算的反应当量浓度。当混合物中可燃物质超过化学反应当量浓度时,空气就会不足,可燃物质就不能全部燃尽,于是混合物在爆炸时所产生的热量和压力就会随着可燃物质在混合物中浓度的增加而减小;如果可燃物质在混合物中的浓度增加到爆炸上限,那么其爆炸现象与在爆炸下限时所产生的现象大致相同。因此,我们说的可燃物质的化学当量浓度也就是理论上完全燃烧时在混合物中该可燃物质的含量。
根据化学反应计算可燃气体或蒸气的反应当量浓度。
例如,求一氧化碳在空气中的反应当量浓度。
- 4 -
解:写出一氧化碳在空气中燃烧的反应式:
2C0+02+3(76N2=2C02+3(76N2
根据反应式得知,参加反应的物质的总体积为2+1+3(76=6(76。若以这个总体积为100,则2个体积的一氧化碳在总体积中所占比例为
X=2/6.76×100,=29(6,
(三)爆炸极限的影响因素
爆炸极限通常是在常温常压等标准条件下测定出来的数据,它不是固定的物理常数。同一种可燃气体、蒸气的爆炸极限也不是固定不变的,它随温度、压力、含氧量、惰性气体含量、火源强度等因素的变化而变化。
1(初始温度
混合气着火前的初温升高,会使分子的反应活性增加,导致爆炸范围扩大,即爆炸下限降低,上限提高,从而增加了混合物的爆炸危险性。
2(初始压力
增加混合气体的初始压力,通常会使上限显著提高,爆炸范围扩大。增加压力还能降低混合气的自燃点,这样使得混合气在较低的着火温度下能够发生燃烧。原因在于,处在高压下的气体分子比较密集,浓度较大,这样分子间传热和发生化学反应比较容易,反应速度加快,而散热损失却显著减少。压力对甲烷爆炸极限的影响。在已知的气体中,只有CO的爆炸范围是随压力增加而变窄的。
混合气在减压的情况下,爆炸范围会随之减小。压力降到某一数值,上限与
- 5 -
下限重合,这一压力称为临界压力。低于临界压力,混合气则无燃烧爆炸的危险。在一些化工生产中,对爆炸危险性大的物料的生产、贮运往往采用在临界压力以下的条件进行,如环氧乙烷的生产和贮运。
3(含氧量
混合气中增加氧含量,一般情况下对下限影响不大,因为可燃气在下限浓度时氧是过量的。由于可燃气在上限浓度时含氧量不足,所以增加氧含量使上限显著增高,爆炸范围扩大,增加了发生火灾爆炸的危险性。若减少氧含量,则会起到相反的效果。例如甲烷在空气中的爆炸范围为5(3,,14,,而在纯氧中的爆炸范围则放大到5(O,,61,。甲烷的极限氧含量为12,,若低于极限氧含量,可燃气就不能燃烧爆炸了。
4(惰性气体含量
爆炸性混合气体中加入惰性气体,如氮、氧、水蒸气、二氧化碳、四氯化碳等,可以使可燃气分子和氧分子隔离,在它们之间形成一层不燃烧的屏障。这层屏障可以吸收能量,使游离基消失,链锁反应中断,阻止火焰蔓延到其他可燃气分子上去,抑制燃烧进行,起到防火和灭火的作用。
混合气体中增加惰性气体含量,会使爆炸上限显著降低,爆炸范围缩小。惰性气体增到一定浓度时,可使爆炸范围为零,混合物不再燃烧。惰性气体含量对上限的影响较之对下限的影响更为显著的原因,是因为在爆炸上限时,混合气中缺氧使可燃气不能完全燃烧,若增加惰性气体含量,会使氧量更加不足,燃烧更不完全,由此导致爆炸上限急剧下降。
5(点火源与最小点火能量
点火源的强度高,热表面的面积大,火源与混合物的接触时间长,会使爆炸
- 6 -
范围扩大,增加燃烧、爆炸的危险性。
最小点火能量是指能引起一定浓度可燃物燃烧或爆炸所需要的最小能量。混合气体的浓度对点火能量有较大的影响,通常可燃气浓度稍高于化学计量浓度时,所需的点火能量为最小。若点火源的能量小于最小能量,可燃物就不能着火。所以最小点火能量也是一个衡量可燃气、蒸气、粉尘燃烧爆炸危险性的重要参数。对于释放能量很小的撞击摩擦火花、静电火花,其能量是否大于最小点火能量,是判定其能否作为火源引发火灾爆炸事故的重要条件。
6(消焰距离
实验证明,通道尺寸越小,通道内混合气体的爆炸浓度范围越小,燃烧时火焰蔓延速度越慢。这是因为燃烧在一通道中进行时,通道的表面要散失热量,通道越窄,比表面积越大(通道表面积和通道容积的比值),中断链锁反应的机会就越多,相应的热损失也越大。当通道窄到一定程度时,通道内燃烧反应的放热速率就会小于通道表面的散热速率,这时燃烧过程就会在通道内停止进行,火焰也就停止蔓延,因此把火焰蔓延不下去的最大通道尺寸叫消焰距离。
各种可燃气有不同的消焰距离,消焰距离还与可燃气的浓度有关,也受气体流速、压力的影响。
所以,消焰距离是可燃物火焰蔓延能力的一个度量参数,也是度量可燃物危险程度的一个重要参数。
爆燃、爆轰与爆炸
目前,很多安全工程技术中的概念并没有统一。这里只是一种解释。
一、燃烧过程可以产生爆炸,燃烧导致的爆炸可以按照燃烧速度分为两类:
1爆炸性混合气体的火焰波以低于声速传播的燃烧过程称为爆燃;
- 7 -
2爆炸性混合气体的火焰波在管道内以高于声速传播的燃烧过程称为爆轰。(注:声速的绝对数值取决于介质,例如空气中的声速和氢气中的声速当然是不一样的。)
二、爆炸可以是化学爆炸(例如由燃烧产生)和物理爆炸(例如快速蒸发引起的爆炸),但是它的共同物理本质就是压力骤变形成压缩波,按照爆炸传播速度分为三类:
1轻爆爆炸传播速度数量级0.1~10m/s;
2爆炸(狭义)爆炸传播速度数量级10~1000m/s;
3爆轰爆炸传播速度大于1000m/s。
这里的“爆轰”定义包涵了燃烧过程中的爆轰。
爆炸与防爆
1.前言
爆炸是物质的一种非常急剧的物理、化学变化,在变化过程中,伴有物质所含能量的快速转变,即变为该物质本身、变化产物或周围介质的压缩能和运动能。其重要特征是大量能量在有限的时间里突然释放或急剧转化,这种能量能在有限的时间和有限的体积内大量积聚造成高温高压等非寻常状态,对邻近介质形成急剧的压力突跃和随后的复杂运动,显示出不寻常的移动或破坏效应。在石油、化工等行业生产过程中,从原料到成品,使用、产生的易燃易爆物质很多,一旦发生爆炸事故,常会带来非常严重的后果,造成巨大的经济损失和人员伤害,譬如泵房垮塌、油罐爆炸着火、装置报废、人员伤亡。正因如此,控制爆炸是石油、化工等行业的重中之重。要科学有效地控制气体、粉尘爆炸,就不能不对爆炸极限有一个正确的理解。
2.爆炸与防爆——爆炸极限的定义
可燃性气体或蒸气与助燃性气体的均匀混合系在标准测试条件下引起爆炸
- 8 -
的浓度极限值,称为爆炸极限。助燃性气体可以是空气、氧气或辅助性气体。一般情况提及的爆炸极限是指可燃气体或蒸气在空气中的浓度极限,能够引起爆炸的可燃气体的最低含量称为爆炸下限LowExplosion-Level(LEL),最高浓度UpperExplosion-Level称为爆炸上限(UEL)。
3.爆炸与防爆——影响爆炸极限的因素
3.1可燃气体
3.1.1混合系的组分不同,爆炸极限也不同。
3.1.2同一混合系,由于初始温度、系统压力、惰性介质含量、混合系存在空间及器壁材质以及点火能量的大小等都能使爆炸极限发生变化。
a.温度影响
因为化学反应与温度有很大的关系,所以,爆炸极限数据必定与混合物规定的初始温度有关。初始温度越高,引起的反应越容易传播。一般规律是,混合系原始温度升高,则爆炸极限范围增大即下限降低,上限增高。但是,目前,还没有大量的系统实验结果。因为系统温度升高,分子内能增加,使原来不燃的混合物成为可燃、可爆系统。初始温度对混合物爆炸极限的影响示例见表1。
表1初如温度对混合物爆炸极限的影响示例
见表
b.压力影响
系统压力增高,爆炸极限范围也扩大,明显体现在爆炸上限的提高。这是由于压力升高,使分子间的距离更为接近,碰撞几率增高,使燃烧反应更容易进行,
- 9 -
爆炸极限范围扩大,特别是爆炸上限明显提高。压力减小,则爆炸极限范围缩小,当压力降至一定值时,其上限与下限重合,此时的压力称为为混合系的临界压力,低于临界压力,系统不爆炸。以甲烷为例说明压力对爆炸极限的影响(见表2)。
表2压力对爆炸极限的影响(以甲烷为例)
见表
c.惰性气体含量影响
混合系中惰性气体量增加,爆炸极限范围缩小,惰性气体浓度提高到某一数值时,混合系就不能爆炸。
惰性气体种类不同,对爆炸极限的影响也不同。以汽油为例,其爆炸极限范围按氮气、燃烧废气、二氧化碳、氟利昂21、氟利昂12、氟利昂11顺序依次缩小。
d.容器、管径影响
容器、管子直径越小,则爆炸范围越小,当管径小到一定程度时,单位体积火焰所对应的固体冷却表面散发出的热量就会大于产生的热量,火焰便会中断熄灭。火焰不能传播的最大管径称为临界直径。
容器材料也有很大影响,如氢和氟在玻璃器皿中混合,即使在液态空气温度下,置于黑暗处仍可发生爆炸,而在银器中,在一般温度下才能发生爆炸反应。
e.点火强度影响
点火能的强度高,燃烧自发传播的浓度范围也就越宽。尤其是爆炸上限向可
- 10 -
燃气含量较高的方向移动。如甲烷在100V电压、1A电流火花作用下,无论何种混合比例情况均不爆炸;若电流增加到2A,其爆炸极限为5.9%-13.6%;电流上繁荣昌盛到3A时,其爆炸极限为5.85%-14.8%。
f.干湿度影响
通常可燃气与空气混合物的相对湿度对于爆炸宽度影响虽小,但在极度干燥时,爆炸范围宽度为最大。
g.热表面、接触时间的影响
热表面的面积大,点火源与混合物的接触时间长等都会使爆炸极限扩大。
h.除此之外,混合系统接触的封闭外壳的材质、机械杂质、光照、表面活性物质等都可能影响到爆炸极限范围。
i.可燃气体的爆炸上限和氧与氮在空气中的比例几乎无关。因为氧和氮的比热相近,燃烧热传递到这两种气体都会导致相同的燃烧温度,所以,混俣气体一旦被点燃,过剩的氧是否被氮所取代,无关紧要。
j.在生产实践中,爆炸上限与空气中的氧含量有很大的关系。这是由于可燃气或可燃蒸气过剩,也就是氧气不足所致
3.2可燃蒸气
a.可燃蒸气的爆炸极限是由可燃液体产生的蒸气浓度决定的。对于可燃液体而言,爆炸下限对应的闪点温度又可以称为爆炸下限温度,爆炸上限浓度对应的液体温度又可以称为爆炸上限温度。
- 11 -
b.可燃蒸气的爆炸上限和氧与氮在空气中的比例几乎无关。原因与上述2.1.2i一样。
c.爆炸上限与空气中的氧含量有很大的关系。原因也是由于氧气不足致使可燃气或可燃蒸气过剩。
3.3.可燃粉尘
3.3.1可燃粉尘爆炸机理
粉尘爆炸是因其粒子表面氧化而发生的。其爆炸过程如下:
粒子表面接受热能时,表面温度上升;粒子表面的分子产生热分解或干馏作用成为气体排放在粒子周围;该气体同空气混合成为爆炸性混合气体,发火产生火焰;这种火焰产生的热,进一步促进粉末的分解不断成为气相,放出可燃气体与空气混合而发火、传播。
3.3.2粉尘爆炸极限受以下因素影响
3.3.2.1粒度粉尘爆炸下限受粒度的影响很大,粒度越高(粒径越小)爆炸下限越低。
3.3.2.2水分含尘空气有水分存在时,爆炸下限提高,甚至失去爆炸性。欲使产品成为不爆炸的混合物,至少使其含50%的水。
3.3.2.3氧的浓度粉尘与气体的混合物中,氧气浓度增加将导致爆炸下限降低。
3.3.2.4点燃源粉尘爆炸下限受点燃源温度、表面状态的影响。温度高、表面
- 12 -
积大的点燃源,可使粉尘爆炸下限降低。
4对爆炸极限的正确认识
以上叙述表明,决不可把爆炸特性值看作是物理常数。而在实际工作中,却有很多人把其当作一个常数,这对处理实际工作中遇到的特殊情况有很大的危害。这些值与测定时所采用的方法有很大的关系。正因如此,同一种气体,其爆炸极限数值在国内、国外权威部门发布的数据也是有所不同。
但是,这些数值由于本身差别并不大,而在进行气体监测报警时,更是取其爆炸下限的10%进行报警,因此,差别就更加微小,一般情况下不影响正常使用,但是,作为一个管理者而言,应该知道这个数值的来源,并根据自己的实际情况予以科学掌握使用,特别是在特殊情况下,比如热表面的面积大、点火源与混合物的接触时间长的情况下,就应该充分考虑到爆炸极限的扩大。如果一成不变,死搬教条,就易引发事故,影响生产的正常运行。
4.爆炸与防爆——爆炸极限的计算
4.1根据化学理论体积分数近似计算
爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下:
L下?0.55c0
式中0.55——常数;
c0——爆炸气体完全燃烧时化学理论体积分数。若空气中氧体积分数按20.9%计,c0可用下式确定
- 13 -
c0=20.9/(0.209+n0)
式中n0——可燃气体完全燃烧时所需氧分子数。
如甲烷燃烧时,其反应式为
CH4+2O2?CO2+2H2O
此时n0=2
则L下=0.55×20.9/(0.209+2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。
4.2对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算
目前,比较认可的计算方法有两种:
4.2.1莱?夏特尔定律
对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限。用Pn表示一种可燃气在混合物中的体积分数,则:
LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)
混合可燃气爆炸上限:
UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)
- 14 -
此定律一直被证明是有效的。
4.2.2理?查特里公式
理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1+V2/L2+……+Vn/Ln)
式中Lm——混合气体爆炸极限,%;
L1、L2、L3——混合气体中各组分的爆炸极限,%;
V1、V2、V3——各组分在混合气体中的体积分数,%。
例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。
Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369
4.3可燃粉尘
许多工业可燃粉尘的爆炸下限在20-60g/m3之间,爆炸上限在2-6kg/m3之间。
碳氢化合物一类粉尘如能完全气化燃尽,则爆炸下限可由布尔格斯-维勒关系式计算:
c×Q=k
- 15 -
式中c——爆炸下限浓度;
Q——该物质每靡尔的燃烧热或每克的燃烧热;
k——常数。
5.爆炸与防爆——超过爆炸极限的危险性
超过爆炸极限可能产生的危险,许多资料都是这样描述的:超过爆炸下限则可燃气或蒸气就既不爆炸也不着火;超过爆炸上限也是如此。从发生机理上讲,爆炸是在经历气体受热、发生燃烧并在特殊情形下发生爆炸。由此来看,上述将爆炸极限与燃烧极限混为一谈是不严密的,因为,这里面涉及一个燃烧极限问题。超过爆炸极限不再发生爆炸显然是正确的,但是,在具别情况下,不发生爆炸但仍可能发生燃烧。只是这个爆炸极限与燃烧极限的差值一般很小,在很多情况下可以视为等值,但不应视为等值,从而一概把超过爆炸极限的危险状况认定为既不爆炸也不燃烧的“安全状况”。利用这一原理,可以在燃烧情况下进行带压不置换动火,从而省时省力。
6.爆炸与防爆——爆炸控制
由于爆炸造成的后果大多非常严重,在化工生产作业中,爆炸压力的作用和火灾的蔓延,不仅会使生产设备遭受损失,而且使建筑破坏,甚至致人死亡。因此,科学防爆是非常重要的一项工作。
防止爆炸的一般原则是:一是控制混合气体的组分处在爆炸极限以外;二是使用惰性气体取代空气;三是使氧气浓度处于其极限值以下。为此应防止可燃气向空气中泄漏,或防止空气进入可燃气体中;控制、监视混合气体组分浓度;装设气体组分接近危险范围的报警装置。
防止爆炸的具体措施主要有以下几点:
- 16 -
1惰性介质保护
由于爆炸的形成需要有可燃物质和氧气,以及一定的点火能量。利用惰性气体取代空气中的氧气,就消除了引发爆炸的一大因素,从而使爆炸过程无法完成。在化工生产中,采取的惰化气体主要用氮气、二氧化碳、水蒸气、烟道气等。
1.1易燃固体物质的粉碎、筛选处理及其粉末输送时,采用惰性气体进行覆盖保护。
1.2处理可燃易爆的物料系统,在进料前,用惰性气体进行置换,以排除系统中原有的气体,防止形成爆炸性混合物。
1.3将惰性气体通过管线与有火灾爆炸危险的设备、贮槽等连接起来,在万一发生危险时使用。
1.4易燃液体利用惰性气体充压输送。
1.5在有爆炸性危险的生产场所,对有引起火灾危险的电器、仪表等采用充氮正压保护。
1.6易燃易爆系统检修动火前,使用惰性气体进行吹扫置换。
1.7发现易燃易爆气体泄漏时,采用惰性气体(水蒸气)冲淡。发生火灾时,用惰性气体进行灭火。
2系统密闭和负压操作
2.1为防止易燃气体、蒸气或可燃性粉尘与空气形成爆炸性混合物,应设法使设备密闭。为了保证设备的密闭性,对危险设备及系统应尽量少用法兰连接,
- 17 -
但要保证安全检修的方便。
2.2为防止有毒或爆炸性危险气体向器外逸散,可以采用负压操作系统。对于在负压操作下生产的设备,应防止空气吸入。
3通风置换
通过通风可以有效防止易燃易爆气体积取并达到爆炸极限。排除有燃烧爆炸危险粉尘的排风系统,应采用不产生火花的除尘器。含有爆炸性粉尘的空气,在进入风机前,应进行净化。
4阻止容器或室内爆炸的安全措施
4.1抗爆容器
对已知的爆炸结果作系统的评定表明,在符合一定结构要求的前提下,即使容器和设备没有附加防护措施,也能承受一定的爆炸压力。如果选择这种结构形式的设备在剧烈爆炸情况下没有被炸碎,而只产生部分变形,那么设备的操作人员就可以安然无恙,这也就达到了最重要的防护目的。
由于这一方法的成本很高,而且,与相关设备的安全可靠性判别太大,因此,在生产实践中很少用到,非特别危险或发生事故造成严重后果的装置不采用。
4.2爆炸卸压
通过固定的开口及时进行卸压,则容器内部就不会产生不可容纳的高爆炸压力,因而也就不必使用能抗这种高压的结构,把没有燃烧的混合物和燃烧的气体排放到大气里去,就可把爆炸压力限制在容器材料强度所能承受的某一数值。卸压装置可分为一次性(如爆破膜)和重复使用的装置(如安全阀)。
- 18 -
4.3房间卸压
主要是用来保护容器和装置的,它能使被保护设备不被炸毁和使用人员不受伤害。也可用卸压措施来保护房间,但不能保护房间里的人。这种情况下,房间里的设备必须是遥控的,并在运行期间严禁人员进入房间。一般可以通过窗户、外墙和建筑物的房顶来进行卸压。
5爆炸遏制
爆炸遏制系统由能检测初始爆炸的传感器和压力式的灭火剂罐组成,灭火剂罐通过传感装置动作。在尽可能短的时间里,把灭火剂均匀地喷射到应保护的容器里。于是,爆炸燃烧被扑灭,控制住爆炸的发生。爆炸燃烧能自行进行检测,并在停电后的一定时间里仍能继续进行工作。
爆炸遏制系统示意图
爆炸遏制系统的重要作用,就是当可燃气或粉尘爆炸时,防止容器里出现不许可的高压,从而使容器、设备免受爆炸损坏,并不会对人造成任何伤害。如果爆炸能引起有毒的或对环境有害的可燃气、蒸气或粉尘散发,那么,爆炸遏制是很重要的措施。
6阻止管道爆炸的防护措施
6.1阻火器
利用阻火器把可能发生的爆炸限制在一定的空间内,阻火器常用的是机械阻火器,但由于其工作面上的狭窄孔隙易附着污物,阻火器必须定期清扫,所以这类阻火器仅被用作输送可燃气或蒸气的管道里。输送易爆粉尘的管道已开始使用自动灭火剂阻火器。这种灭火剂阻火器是根据光学火焰信号器可以探测管道里的
- 19 -
爆炸的原理而制造的。信号器发出的脉冲经过放大器后很快打开由雷管启动的灭火剂贮罐活门,从而使喷出的灭火剂畅通地到达管道的内部,切断粉尘爆炸的传播。
6.2管道卸压
一是装爆破膜。管道发生的爆炸压力使爆破膜破裂,从而使管道卸压。为了能使管道在最恰当的时机泄压,防止爆轰的形成,现在已经发展应用外部控制式阻火器。
二是装防爆瓣阀。这是一种具有一定重量的能自动闭合的卸压装置。当爆炸或爆轰发生时,防爆瓣阀能够打开管端的排气口,接着再重新关闭,并尽可能地密封。
管道上应用上述卸压装置时,要特别慎重。因为卸压动作会引起爆炸速度和爆炸压力的上升,所以对管端卸压装置的功能和机械强度的要求是很高的。使用管端卸压装置要防止管端随时遭到破坏(终端法兰、弯头、支管)。
6.3快速关闭装置
这种装置近似一个在一定的爆炸压力下,能够自动动作紧急切断管线物料的阀门。它可以阻止与管道连接的容器出现超高压力上升,并能防止爆炸从防护部位往没有防护的部位传播。
爆炸与防爆——结束语(7)
正确认识爆炸极限对防爆工作非常重要。在易燃易爆场所的作业工人及安全工作者必须对其数据的由来及影响因素有一个全面正确的认识,从而准确把握,特别是对一些特殊情况能够预见到超乎常规的危险,做出正确的行动。在严格规范管理的同时,要跟踪科学技术的发展,运用最先进的技术手段,来有效防范爆
- 20 -
炸事故的发生。
爆炸极限
爆炸极限之一
当可燃性气体(蒸气)或可燃性粉尘与空气混合并达到一定浓度时,遇到火源就会发生爆炸。这些可燃物质与空气所形成的爆炸混合物能够发生爆炸的浓度范围,叫做爆炸极限。通常用可燃物质在爆炸混合物中的体积百分比来表示,有时也用每立方米或每升混合物中含有可燃物质若干克来表示。
爆炸极限说明可燃气体(蒸气)或粉尘与空气的混合物并不是在任何比例下都有可能发生爆炸的,它有一个最低的爆炸浓度棗爆炸下限,和一个最高的爆炸浓度棗爆炸上限。只有在这两个浓度之间,才有爆炸的危险。如果可燃物质在混合物中的浓度低于爆炸下限,由于空气所占的比例很大,可燃物质浓度不够,因而遇到明火,既不会爆炸,也不会燃烧。如果可燃物质在混合物中的浓度高于爆炸上限,由于含有大量的可燃物质,空气不足,缺少助燃的氧气,遇到明火,虽然不会爆炸,但接触空气却能燃烧。
爆炸极限之二
一种可燃性气体(或蒸气)和空气的适量混合物组成爆炸混合物,混合物能发生爆炸的浓度范围,叫爆炸极限。空气里含有可燃性气体(如氢气、一氧化碳、甲烷等)或蒸气(如乙醇蒸气、汽油蒸气等)时,在一定体积分数范围内,遇火花(或催化剂)就会使火焰蔓延而发生爆炸。爆炸混合物中可燃性气体或蒸气遇火爆炸的最低体积分数称为低限(或下限);最高体积分数称为高限(或上限)。体积分数低于这个限度时,遇空气和明火也不表现为燃烧,体积分数高于这个限度时遇空气和明火能进行安全燃烧。总之体积分数低于或高于这一范围,遇明火都不会发生爆炸。爆炸极限一般用可燃性气体或蒸气在爆炸混合物中的体积分数来表示。在可燃物的生产、储存、运输和使用时,都必须注意其爆炸极限,以保
- 21 -
证安全。
空气中可燃气体爆炸极限测定方法 GB,T 12474—90
国家技术监督局1990-09-10批准 1991-09-01实施
爆炸极限应用于可燃气体危险性的分类。有爆炸性危险的工艺设备内允许可燃气体的浓度,爆炸性气体环境的通风和供热系统的计算,动火作业时安全浓度的确定等都同这一参数有关。
可燃气体和空气混合气的爆炸极限与以下因素有关:
a( 可燃气体的种类及化学性质;
b( 可燃气体的纯度;
c( 可燃气体和空气混合气的均匀性;
d( 点火源的形式、能量和点火位置;
e( 爆炸容器的几何形状和尺寸;
f 可燃气体和空气混合气的温度、压力和湿度。
1 主题内容与适用范围
本标准规定了测定可燃气体在空气中爆炸极限的方法。
本标准适用于常温常压下测定可燃气体在空气中的爆炸极限值。
- 22 -
本标准不适用于测定其他安全技术参数。
注:按照本标准规定的方法点燃混合气后未形成火焰传播,不能认为该混合气不会爆炸,具体情况由有关专家予以 解释。
2 术语
爆炸范围 explosion range
可燃气体与空气的混合气中,可燃气体的爆炸下限与爆炸上限之间的浓度范围称为爆炸范围。
3 试验方法
3(1 试验装置
爆炸极限测定装置见示意图。主要由反应管、点火装置、搅拌装置、真空泵、压力计、电磁阀等组成。装置的主要部分是一个用硬质玻璃为材质的反应管,管长1400?50mm,管内径φ60?5mm,管壁厚不小于2mm,管底部装有通径不小于φ25mm泄压阀。装置安放在可升温至50?的恒温箱内。恒温箱前后各有双层门,一层为普通玻璃,一层为有机玻璃,用以观察实验并起保护作用。
- 23 -
爆炸极限装置示意图
1一安全塞;2一反应管;3一电磁阀;4一真空泵;5一干燥瓶;6一放电电极;7一电压互感器;8一泄压电磁阀;9一搅拌泵;10一压力计;M1、M2一电动机
可燃气体和空气混合气利用电火花点燃,电火花能量应大于混合气的点燃能量。放电电极距反应管底部不小于100mm处位于管的横截面中心,电极间距离为3,4mm。
- 24 -
注:建议采用300VA电压互感器作为点火电源,产生高压为10kV(有效值),火花持续时间为0.5s左右。
3(2 试验步骤
先检查装置的密闭性,将装置抽真空至不大于668Pa(5mmHg)的真空度,然后停泵。经5min压力计压力下降不大于267Pa(2mmHg),认为真空度符合要求。按分压法进行混合气配制,为了使反应管内可燃气在空气中均匀分布,配好气后利用无油搅拌泵搅拌5,10min,停止搅拌,然后打开反应管底部泄压阀进行点火,并观察火焰是否传至管顶。点火时恒温箱的有机玻璃门应处在关闭状态。
每次试验后要用湿度低于30,的清洁空气冲洗试验装置,反应管壁及点火电极若有污染应清洗。用渐近法通过测试寻找极限值,如果在同样条件下进行三次试验,点火后火焰均未传至管顶,则可改变进样量,进行下一个浓度的试验。测爆炸下限时样品增加量每次不大于10,,测爆炸上限时样品减少量,每次不小于2,。新组装的测定装置应做10次左右的试验再进行正式测定。
3(3 测试结果计算
通过实验找到最接近的火焰传播和不传播两点的体积分数,并按下式计算爆炸极限值。
式中: φ——爆炸极限;
φ——传播体积分数; 1
φ——不传播体积分数。 2
注:反应管内可燃气与空气混合后被电火花点燃,形成火焰面并燃烧至管顶定为传播,如未燃烧至管顶定为不传播。
4 试验结果说明
- 25 -
4(1 重复性
同一个测试人员测得的重复试验结果,误差不应大于5,。 4(2 再现性
不同实验室测得的重复试验结果的平均值,误差不应大于10,。
5 装置的考察
安装后的装置进行正式测定前,用纯度不低于99.9,的乙烯考察(乙烯的
爆炸下限值为0.0315,爆炸上限值为0.345),如测定结果符合第4(2条即认为
装置运转正常。
6 试验报告
试验报告应包括以下内容:
a( 可燃气体种类及主要物理化学性质;
b( 试验时可燃气体和空气混合气的温度和大气压力;
c( 爆炸极限值;
d( 若试验操作与本标准规定有偏离应加以说明;
e( 试验日期。
附加说明:
本标准由中华人民共和国公安部提出。
- 26 -
本标准由全国消防标准化技术委员会归口。
本标准由公安部天津消防科学研究所负责起草。
本标准主要起草人宋玉池、赵培华、张鸣辰。
爆炸极限的意义
可燃物质(可燃气体、蒸气和粉尘)与空气(或氧气)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或爆炸浓度极限。例如一氧化碳与空气混合的爆炸极限为12.5,,80,。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为爆炸下限和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限和高于爆炸上限浓度时,既不爆炸,也不着火。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。
爆炸极限的表示
爆炸极限的单位气体或蒸气的爆炸极限的单位,是以在混合物中所占体积的百分比(,)来表示的,如氢与空气混合物的爆炸极限为4,,75,。可燃粉尘的爆炸极限是以混合物中所占体积的质量比g,m^3来表示的,例如铝粉的爆炸极限为40g,m^3。
- 27 -
范文四:爆炸极限
(一)爆炸极限的基本理论及其影响因素
爆炸极限是表征可燃气体和可燃粉尘危险性的主要示性数。当可燃性气体、蒸气或可燃粉尘与空气(或氧)在一定浓度范围内均匀混合,遇到火源发生爆炸的浓度范围称为爆炸浓度极限,简称爆炸极限。
将这一浓度范围的混合气体(或粉尘)称作爆炸性混合气体(或粉尘)。可燃性气体、蒸气的爆炸极限一般用可燃气体或蒸气在混合气体中的所占体积分数来表示;可燃粉尘的爆炸极限是以在混合物中的质量浓度(g/m3)来表示。
可燃性气体的体积分数及质量浓度比在20℃时的换算公式如下:
式中L——体积分数, Y——质量浓度,g/m3。
M——可燃性气体或蒸气的相对分子质量;
22.4——标准状态下(0℃,l atm) l mol物质气化时的体积。
把能够爆炸的最低浓度称作爆炸下限;能发生爆炸的最高浓度称作爆炸上限。用爆炸上限与下限浓度之差与爆炸下限浓度之比值表示其危险度H,即:
H =(L上—L下)/ L下 或 H = (Y上—Y下)/ Y下
H值越大,表示可燃性混合物的爆炸极限范围越宽,其爆炸危险性越大。
可燃性气体、蒸气或粉尘在爆炸极限范围内,遇到热源(明火或温度),火焰瞬间传播于整个混合气体(或混合粉尘)空间化学反应速度极快,同时释放大量的热,生成很多气体,气体受热膨胀,形成很高的温度和很大的压力,具有很强的破坏力。
可燃性气体、蒸气或粉尘爆炸极限的概念可以用热爆炸理论来解释。当可燃性气体、蒸气或粉尘的浓度小于爆炸下限时,由于在混合物中含有过量的空气,过量空气的冷却作用及可燃物浓度的不足,导致系统得热小于失热,反应不能延续下去;同样,当可燃性气体(或粉尘)的浓度大于爆炸上限时,则会有过量的可燃物,过量的可燃物不仅因缺氧而不能参与反应、放出热量,反而起冷却作用,阻止了火焰的蔓延。当然,也还有爆炸上限达100%的可燃气体和蒸气(如环氧乙烷、硝化甘油等),可燃性粉尘(如火炸药粉尘)。这类物质在分解时会自身供氧,使反应持续进行下去。随着气体压力和温度的升高,越容易引起分解爆炸。
爆炸极限值不是一个物理常数,它是随实验条件的变化而变化,在判断某工艺条件下的爆炸危险性时,需根据危险物品所处的条件来考虑其爆炸极限,如在火药、起爆药、炸药烘干工房内可燃蒸气的爆炸极限与其他工房在正常温度下的极限是不一样的,在受压容器和在正常压力下的爆炸极限亦有所不同;其他因素如点火源的能量,容器的形状、大小,火焰的传播方向,惰性气体与杂质的含量等均对爆炸极限有影响。
1.温度的影响
混合爆炸气体的初始温度越高,爆炸极限范围越宽,则爆炸下限降低,上限增高,爆炸危险性增加。这是因为在温度增高的情况下,活化分子增加,分子和原子的动能也增加,使活化分子具有更大的冲击能量,爆炸反应容易进行,使原来含有过量空气(低于爆炸下限)或可燃物(高于爆炸上限)而不能使火焰蔓延的混合物浓度变成可以使火焰蔓延的浓度,从而扩大了爆炸极限范围。例如丙酮的爆炸极限受温度影响的情况见表2—1。
2.压力的影响
混合气体的初始压力对爆炸极限的影响较复杂,在0.1~2.0 MPa的压力下,对爆炸下限影响不大,对爆炸上限影响较大;当大于2.0 MPa时,爆炸下限变小,爆
炸上限变大,爆炸范围扩大。这是因为在高压下混合气体的分子浓度增大,反应速度加快,放热量增加,且在高气压下,热传导性差,热损失小,有利于可燃气体的燃烧或爆炸。甲烷混合气初始压力对爆炸极限的影响见表2 —2。
值得重视的是当混合物的初始压力减小时,爆炸极限范围缩小,当压力降到某一数值时,则会出现下限与上限重合,这就意味着初始压力再降低时,不会使混合气体爆炸。把爆炸极限范围缩小为零的压力称为爆炸的临界压力。甲烷在3个不同的初始温度下,爆炸极限随压力下降而缩小的情况如图2—4所示。因此,密闭设备进行减压操作对安全是有利的。
3.惰性介质的影响
若在混合气体中加入惰性气体(如氮、二氧化碳、水蒸气、氩、氮等),随着惰性气体含量的增加,爆炸极限范围缩小。当惰性气体的浓度增加到某一数值时,使爆炸上下限趋于一致,使混合气体不发生爆炸。这是因为加入惰性气体后,使可燃气体的分子和氧分子隔离,它们之间形成一层不燃烧的屏障,而当氧分子冲击惰性气体时,活化分子失去活化能,使反应键中断。若在某处已经着火,则放出热量被惰性气体吸收,热量不能积聚,火焰不能蔓延到可燃气分子上去,可起到抑制作用。惰性气体氩、氦,阻燃性气体CO2及水蒸气、四氯化碳的浓度对甲烷气体爆炸极限的影响如图2—5所示。
由图2—5可知混合气体中惰性气体浓度的增加,使空气的浓度相对减少,在爆炸上限时,可燃气体浓度大,空气浓度小,混合气中氧浓度相对减少,故惰性气体更容易把氧分子和可燃性气体分子隔开,对爆炸上限产生较大的影响,使爆炸上限剧烈下降。同理混合气体中氧含量的增加,爆炸极限范围扩大,尤其对爆炸上限提高得更多。
4.爆炸容器对爆炸极限的影响
爆炸容器的材料和尺寸对爆炸极限有影响,若容器材料的传热性好,管径越细,火焰在其中越难传播,爆炸极限范围变小。当容器直径或火焰通道小到某一数值时,火焰就不能传播下去,这一直径称为临界直径或最大灭火间距。如甲烷的临界直径为0.4~0.5m m,氢和乙炔为0.1~0.2 mm。目前一般采用直径为50 mm的爆炸管或球形爆炸容器。
5.点火源的影响
当点火源的活化能量越大,加热面积越大,作用时间越长,爆炸极限范围也越大。图2—6是电点火能量对甲烷、空气混合气体爆炸极限的影响。从图中可以看出,当火花能量达到某一值时,爆炸极限范围受点火能量的影响较小,如图2—6中,当点火能量为l0J时,其爆炸极限范围趋于稳定值,为6%~15%。所以,一般情况下,爆炸极限均在较高的点火能量下测得,如测甲烷与空气混合气体的爆炸极限时,用10J以上的点火能量,其爆炸极限为5%~15%。
(二)爆炸反应浓度、爆炸温度和压力的计算
1.爆炸完全反应浓度计算
爆炸混合物中的可燃物质和助燃物质完全反应的浓度也就是理论上完全燃烧时在混合物中可燃物的含量,根据化学反应方程式可以计算可燃气体或蒸气的完全反应浓度。现举例如下:
[例]求乙炔在氧气中完全反应的浓度。
[解]写出乙炔在氧气中的燃烧反应式:
2C2H2+502 = 4C02+2H20+Q
根据反应式得知,参加反应物质的总体积为2+5 = 7。若以7这个总体积为100,则2个体积的乙炔在总体积中占:Xo = 2/7 = 28.6%
答:乙炔在氧气中完全反应的浓度为28.6%。
可燃气体或蒸气的化学当量浓度,也可用以下方法计算。
燃气体或蒸气分子式一般用CαHβOγ表示,设燃烧1 mol气体所必需的氧的物质的量为n,则燃烧反应式可写成:
CαHβOγ+ nO2 → 生成气体
如果把空气中氧气的浓度取为20.9%,则在空气中可燃气体完全反应的浓度x(%)一般可用下式表示:
1 20.9
X = ———— = -----———% (2—4)
n 0.209+ n
1+ ——
0.209
又设在氧气中可燃气体完全反应的浓度为 X0(%),即:
100
X0 = ——% (2—5)
1+n
式(2—4)和式(2—5)表示出X和X。与n或2n之间的关系(2n表示反应中氧的原子数)。
CαHβOγ+ nO2 →αCO2 + 1/2βH2O
式中2n = 2α+1/2β-γ,对于石蜡烃β=2a+2。因此,2n = 3a+1-γ。根据2n的数值,从表2 4中可直接查出可燃气体或蒸气在空气(或氧气)中完全反应的浓度。
[例]试分别求H2、CH3OH、C3H8 C6H6在空气中和氧气中完全反应的浓度。
[解](1)公式法:
(2)查表法:根据可燃物分子式,用公式2n = 2α+1/2β-γ,求出其2n值。由2n数值,直接从表2—4中分别查出它们在空气(或氧)中完全反应的浓度。
2.爆炸温度计算
1)根据反应热计算爆炸温度
理论上的爆炸最高温度可根据反应热计算。
[例]求乙醚与空气的混合物的爆炸温度。
[解](1)先列出乙醚在空气中燃烧的反应方程式:
C4H100 + 602 + 22.6N→ 4C02 + 5H2O + 22.6N2
式中,氮的摩尔数是按空气中N2∶O2=79∶21的比例确定的,即 602对应的N2应为:
6×79/21 = 22.6
由反应方程式可知,爆炸前的分子数为29.6,爆炸后为31.6。
(2)计算燃烧各产物的热容。
气体平均摩尔定容热容计算式见表2—5。
表2-5气体平均摩尔定容热容计算式考试用书
气 体
热容/(4186.8J/(kmol·℃))
单原子气体(Ar、He、金属蒸气等)
双原子气体(N2、O2、H2、CO、NO等)
C02、S02
H2O、H2S
所有口原子气体(NH3及其他)
所有五原于气体(CH4及其他)
4.93
4.80 + 0.00045t
9.0 + 0.00058t
4.0 + 0.00215t
10.00 + 0.00045t
12.00 + 0.00045t
根据表中所列计算式,燃烧产物各组分的热容为:
N:的摩尔定容热容为[(4.8 + O.00045t)×4186.8]J/(kmol·℃)
H20的摩尔定容热容为[(4.0 + 0.00215t)X4186.8]J/(kmol·℃)
CO2的摩尔定容热容为[(9.0 + 0.00058t)X4186.8]J/(kmol·℃)
燃烧产物的热容为:
[22.6(4.8+0.00045t)×4186.8]J/(kmol·℃) = [(454+0.042t)×1O3]J/(kmol·℃)
[5(4.0+0.00215t)×4186,8]J/(kmol·℃) = [(83.7+0.045t) ×1O3]J/(kmol·℃)
[4(9.0+0.00058t)×4186.8]J/(kmol·℃)=E(150.7+0.0097t) ×1O3]J/(kmol·℃)
燃烧产物的总热容为(688.4+0.0967t)×103J/(kmol·℃)。这里的热容是定容热容,符合于密闭容器中爆炸情况。
(3)求爆炸最高温度。
先查得乙醚的燃烧热为2.7×lO6J/mol,即2.7×109J/kmol。
因为爆炸速度极快,是在近乎绝热情况下进行的,所以全部燃烧热可近似地看作用于提高燃烧产物的温度,也就是等于燃烧产物热容与温度的乘积,即:
2.7×lO9 = [(688.4+0.0967t)×103]·t
解上式得爆炸最高温度t=2826℃。
上面计算是将原始温度视为0℃。爆炸最高温度非常高,虽然与实际值有若干度的误差,但对计算结果的准确性并无显著的影响。
3.爆炸压力的计算
可燃性混合物爆炸产生的压力与初始压力、初始温度、浓度、组分以及容器的形状、大小等因素有关。爆炸时产生的最大压力可按压力与温度及摩尔数成正比的规律确定,根据这个规律有下列关系式:
P T n
—— = —— × —— (2—7)
P0 T0 m
式中P、T和n——爆炸后的最大压力、最高温度和气体摩尔数;
Po、To和m——爆炸前的初始压力、初始温度和气体摩尔数。
由此可以得出爆炸压力计算公式: T n
P = —— × P0 (2—8)
T0 m
[例]设Po = 0.1MPa.To=27℃,T=2411K,求一氧化碳与空气混合物的最大爆炸压力。
[解]当可燃物质的浓度等于或稍高于完全反应的浓度时,爆炸产生的压力最大,所以计算时应采用完全反应的浓度。
先按一氧化碳的燃烧反应式计算爆炸前后的气体摩尔数:
2CO+O2+3.76N2=2C02+3.76N2
由此可得出m=6.76,n=5.76,代入式(2—8),得:
2411×5.76 ×0.1
P = ————————— = 0.69
300×6.67
以上计算的爆炸温度与压力都没有考虑热损失,是按理论的空气量计算的,所得的数值都是最大值。
(三)爆炸上限和下限的计算,含有惰性气体组成混合物爆炸极限计算
1.爆炸上限和下限的计算
(1)根据完全燃烧反应所需氧原子数,估算碳氢化合物的爆炸下限和上限,其经验公式如下:
100
L下 = ———————— (2—9)
4.76 (N-1)+1
4×100
L上 = —————— (2—10)
4.76 N+4
式中L下-——碳氢化台物的爆炸下限;
L上——碳氢化合物的爆炸上限;
N——每摩尔可燃气体完全燃烧所需氧原子数。
[例]试求乙烷在空气中的爆炸下限和上限。
[解]写出乙烷的燃烧反应式,求出N值:
C2H6+3.502 = 2C02+2H20 则N = 7。
将N值分别代入式(2—9)及式(2—10),得;
100 100
L下 = —————— = ——— = 3.38 %
4.76 (7-1)+1 29.56
4 ×100 400
L上 = —————— = ——— = 10.7 %
4.76×7+4 37.32
乙烷在空气中的爆炸下限浓度为3.38%,爆炸上限浓度为10.7%。
实验测得乙烷的爆炸下限为3.0%,爆炸上限为12.5%,对比上述估算结果,可知用此方法估算的爆炸上限值小于实验测得的值。
(2)根据爆炸性混合气体完全燃烧时摩尔分散,确定有机物的爆炸下限及上限。计算公式如下:
L下 = 0.55X。 (2—11)
L上 = 4.8√X。 (2—12)
式中X。为可燃气体摩尔分数,也就是完全燃烧时在混合气体中该可燃气体的含量。
2.多种可燃气体组成的混合物的爆炸极限计算
由多种可燃气体组成爆炸性混合气体的爆炸极限,可根据各组分的爆炸极限进行计算。其计算公式如下:
100
Lm = —————————— (2—13)
V1 V2 V3
—+ — + — +…
L1 L2 L3
式中 Lm——爆炸性混合气的爆炸极限,%;
L1、L2、L3——组成混合气各组分的爆炸极限,%;
V1、V2、V3——各组分在混合气中的浓度,%。
V1+ V2+ V3+… = 100%
例如,某种天然气的组成如下:甲烷80%,乙烷15%,丙烷4%,丁烷1%。各组分相应的爆炸下限分别为5%,3.22%,2.37%和1.86%,则天然气的爆炸下限为;
100
Lm = ———————————————— = 4.37 %
80 15 4 1
— + ——— + ——— + ———
5 3.22 2.37 1.86
将各组分的爆炸上限代入式(2 13),可求出天然气的爆炸上限。
式(2一13)用于煤气、水煤气、天然气等混合气爆炸极限的计算比较准确,而对于氢与乙烯、氢与硫化氢、甲烷与硫化氢等混合气及一些含二硫化碳的混合气体,计算的误差较大。
3.含有惰性气体组成混合物的爆炸极限计算
如果爆炸性混合气体中含有惰性气体如氮、二氧化碳等,计算爆炸极限时,可先求出混合物中由可燃气体和惰性气体分别组成的混合比,再从图2—7和图2—8中找出它们的爆炸极限,并分别代入式(2—13)中求得。
[例]求某回收煤气的爆炸极限,其组分为:CO 58%,C02 19.4%,N2 20.7%,02 0.4%,H2 1.5%。
[解]将煤气中的可燃气体和惰性气体组合为两组:
(1)C0和C02,即58(C0)+19.4(C02) = 77.4%(C0+ C02)
其中, 惰性气体/可燃气体 = C02/C0 = 19.4/58 = O.33 由图2—7中查得, L上 =70%, L下= 17%。
(2)N2和H2,即1.5(H2)+ 20.7(N2)= 22.2%(N2+H2) 其中, 惰性气体/可燃气体 = N2/H2 =20.7/1.5 = 13.8 从图2 7查得 L上 = 76%,L下 = 64%
将上述数据代入式(2—13)即可求得煤气的爆炸极限:
1
L下 = ———————————— = 20.3 %
0.774/17 + 0.222/64
1
L上 = ———————————— = 71.5 %
0.774/70 + 0.222/76
该煤气的爆炸极限为20.3%~71.5%。
范文五:爆炸极限
爆炸极限 可燃物质(可燃气体、蒸气和粉尘)与空气(或
氧气)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或爆炸浓度极限。
爆炸上限同样不燃不爆。
一般规律是:混合系原始温度升高,则爆炸极限范围增大,即下限降低、上限升高。系统压力增大,爆炸极限范围也扩大,混合系中所含惰性气体量增加,爆炸极限范围缩小,惰性气体浓度提高到某一数值,混合系就不能爆炸。容器、管子直径越小,则爆炸范围就越小。
气体或蒸汽爆炸极限是以可燃性物质在混合物中所占体积的百分比(%)来表示的,如氢与空气混合物的爆炸极限为4%~75%。可燃粉尘的爆炸极限是以可燃性物质在混合物中所占体积的质量比g/m^3来表示的,例如铝粉的爆炸极限为40g/m^3。
可燃气体或蒸气 分子式 爆炸极限(%):下限 上限
氢气
H2 4.0 74.2
氨 NH3 15. 5 27
一氧化碳 CO 12.5 74.2
乙醛 CH3CHO 4.1 55.0
测量范围0-100%LEL是什么意思?
“LEL”是指爆炸下限。 可燃气体在空气中遇明火种爆炸的最低浓度,称为爆炸下限—简称%LEL。英文:Lower Explosion Limited。
可燃气体在空气中遇明火种爆炸的最高浓度,称为爆炸上限—简称%UEL。英文:Upper Explosion Limited。
那么什么是爆炸下限?
可燃性气体的浓度过低或过高它是没有危险的,它只有与空气混合形成混合气或更确切地说遇到氧气形成一定比例的混合气才会发生燃烧或爆炸。燃烧是伴有发光发热的激烈氧化反应,它必须具备三个要素:a、可燃物(燃气);b、助燃物(氧气);c、点火源(温度)。可燃气的燃烧可以分为两类,一类是扩散燃
烧,即挥发的或从设备中喷出、泄漏的可燃气,遇到点火源混合燃烧。另一类燃烧,是可燃气与空气混合着火燃烧,这种燃烧反应激烈而速度快,一般会产生巨大的压力和声响,又称之为爆炸。燃烧与爆炸没有严格的区分。
有关权威部门和专家已经对目前发现的可燃气作了燃烧爆炸分析,制定出了可燃性气体的爆炸极限,它分为爆炸上限(英文upper explode limit的简写UEL)和爆炸下限(英文lower explode limit的简写LEL?)。低于爆炸下限,混合气中的可燃气的含量不足,不能引起燃烧或爆炸,高于上限混合气中的氧气的含量不足,也不能引起燃烧或爆炸。另外,可燃气的燃烧与爆炸还与气体的压力、温度、点火能量等因素有关。爆炸极限一般用体积百分比浓度表示。
爆炸极限是爆炸下限、爆炸上限的总称,可燃气体在空气中的浓度只有在爆炸下限、爆炸上限之间才会发生爆炸。低于爆炸下限或高于爆炸上限都不会发生爆炸。因此,在进行爆炸测量时,报警浓度一般设定在爆炸下限的25%LEL以下。
直接燃烧甲醇或甲醇蒸汽是被国际环保组织禁止的。因为:
1.直接燃烧甲醇或甲醇蒸汽,其燃烧温度会超过1300℃,这时会产生对人体具有巨大伤害的有毒物质--甲醛。
2.直接燃烧甲醇或甲醇蒸汽还会产生对人体有害的物质-NOx系列的麻痹神经的气体。所以燃烧甲醇的使用受到了限制。
在催化剂的作用下,使得甲醇氧化低温反应,反应温度仅为500℃~550℃,这样就不会生成甲醛等有害物质,且设备运行更安全,废热少,热效率高。甲醇制氢氧化供热系统催化反应温度低,催化剂分布在所有管程之中,加热均匀,同时出口又设置了空气换热器,进一步回收了热量,所以反应后混合气体出口温度仅为150℃左右。热效率非常高。
希望楼主有用。
每mol甲醇释放的能量为725.76kj 另1KWH=3600kj 计算得出1KWH(度)与4.96mol(0.1587KG)甲醇充分氧化后放出的能量是相等的。考虑到风机的电损耗和废热损耗约占总损耗的4%左右(计算略),最终每KWH能量甲醇用量约为0.162KG左右
现阶段甲醇的价格约为3元/KG,0.161KG甲醇的费用为0.48元,现阶段工业用电的价格约为0.85元/KWH
这样计算下来0.48/0.85=0.56 所以说甲醇制氢氧化供热成本只为电加热的55%左右
CH3OH+H2O=CO2+3H2 +49.5 KJ/mol
64克甲醇燃烧放出的热量=64*22.68=1451.52KJ
2CH3OH(l)+3O2(g)= 2CO2(g)+4H2O(l)+1451.52KJ
在250C、101KPa时,1g甲醇完全燃烧生成CO2和液态水时放热22.68kJ,则能表示甲醇燃烧的热化学方程式为: CH3OH(g)+3/2O2(g) ===CO2(g)+2H2O(l),△H=—729.6kJ·mol—1
转载请注明出处范文大全网 » 爆炸极限范围[最新]