范文一:生物膜的培养
(三)生物膜的培养
生物膜的培养实质就是在一段时间内,通过一定的手段,使处理系统中产生并积累一定量的微生物、使生物膜达到一定厚度,其培养方式主要有静态培养和动态培养。
1. 静态培养
所谓的静态培养是:为了防止新生微生物随水流走,尽可能的提供微生物与填料层的接触时间,为加快生物膜的形成,开始阶段为了避免由于造纸废水营养单一,故每天一次以BOD5;N :P=100:5:1比例投加尿素、二胺、白糖等营养底物。首先将接种污泥50m3(5生化有效体积)和废水按1:1的比例稀释混合后用泵打入生化池内,再泵入20~40生化体积的生产废水,然后剩余体积加清水贮满池子开始曝气培养。生化池内填料的堆放体积按反应池有效容积35~40。静置20h 不曝气,使固着态微生物接种到填料上,然后曝气24h ,静置2h 后排掉反应器中呈悬浮状态的微生物。再将配制好的混合液加入重复操作,6天后,填料表面已全部挂上生物膜,第7天开始连续小水量进水。
2. 动态培养
经过7天的闷曝培养,填料表面已经生长了薄薄一层黄褐色生物膜,故改为连续进水,进行动态培养,调整进水量,使污水在生化池内的停留时间为24小时,控制溶解氧在2~4mg/L之间(用溶氧仪测定溶解氧)。约15天之后,填料上有一些变形虫、漫游虫(用生物显微镜观察),手摸填料有粘性、滑腻感,在20天以后出现鞭毛
虫、钟虫、草履虫游离菌等原生动物。在经过20天的培养出现轮虫、线虫等后生动物,标志生物膜已经长成。可以开始连续小水量工业运行。。
(四)生物膜的驯化
驯化的目的是选择适应实际水质情况的微生物,淘汰无用的微生物,对于有脱氮除磷功能的处理工艺,通过驯化使硝化菌、反硝化菌、聚磷菌成为优势菌群。具体做法是首先保持工艺的正常运转,然后,严格控制工艺控制参数,DO 平均应控制在2~4mg/l之间,好氧池曝气时间不小于5小时,在此过程中,每天做好各项水质指标和控制参数的测定,当生物膜的平均厚度在2mm 左右生物膜培养即告成功,直到出水BOD5、SS 、CODCr 等各项指标达到设计要求。
(五)工艺控制参数的确定
设计中的工艺控制参数是在预测水量、水质条件下确定的,而实际投入运行时的污水处理工程其水量、水质往往与设计有适当的差异,因此,必须根据实际水量水质情况来确定合适的工艺运行参数,以保证系统正常运行和出水水质达标的的同时尽可能降低能耗。
1. 工艺参数内容:
需确定的重要工艺参数有进水泵站的水位控制,初沉池、二沉池池排泥周期,浅层气浮处理量、加药量,生物接触氧化池溶解氧DO 、温度、PH 值、生物膜厚、微生物的生长状态及种类,二沉池泥面高度等。
2. 确定方法:
进水泵站水位在保证进水系统不溢流的前提下尽可能控制在高水位运行。用每天排除大泥量的体积和集泥容积对比来确定排泥周期,排泥量体积小于集泥容积。浅层气浮处理能力由厂区所排污水量确定,PAC 、PAM 的投加量由实际混凝、絮凝情况定,理论与实际不太一样。生物接触演化池DO 一般控制在2~4mg/l之间、不需污泥回流、常温控制、PH 值在6.8~7.2之间,微生物的生长状况及种类可由生物显微镜观察。
(六)工艺控制规程:
工艺操作规程主要是用来指导系统运行的,是工艺运行的主要依据,其主要包含以下几方面的内容:1,各构筑物的基本情况;2,各构筑物运行控制参数;3,设施设备运行方式;4,工艺调整方法;5,处理设施维护维修方式。工艺操作规程应在运行工艺参数稳定确定后编制。
(七)调试中的其他工作:
污水厂要正常稳定的运行,还应有一套完善的制度,其主要包括管理制度、岗位职责、操作规程、运行记录、设备、设施维护工作档案记录等,在调试过程中可分步完成上述工作。
三、异常现象处理方法及注意事项
1. 在生物膜培养的初始阶段,采用小负荷进水方式,使填料层表面应逐渐被膜状污泥(生物膜)所覆盖;
2. 试运行中,应严格监测生物接触氧化池内DO 、温度、PH 值变化、微生物生长状态及种类;
3. 严格控制生物膜的厚度,保持好氧层厚度2mm 左右,应不使厌氧层的过分增长,保证生物膜的脱落均衡进行;
4. 生物接触氧化在运行过程中应注意在低、中、高负荷时,DO 控制不当均有可能发生生物膜的过分生长与脱落,故应控制污泥负荷在0.2~0.3kgBOD5/kgMLSS之间;
5. 浅层气浮的加药处理出水水质应以满足生化设计进水水质条件为准,保证气浮加药的稳定以利于后续生化处理,因不同厂家生产的PAC 含有大约6~7的Ca 粉容易生化池泛白,经曝气反应生成Ca CO3包裹生物膜的表面造成生物膜接壳致使生物膜严重脱落,影响生化的正常运行。同时因聚合氯化铝中AL3 、CL-对微生物的生长或多或少的抑制,建议投加聚铁,Fe3 是微生物生长的微量元素。
6. 运行前对所有设施、管道及水下设备进行检查,彻底清理所有杂物,以避免通水后管道、设备堵塞和维修水下设备影响调试的顺利进行。
7. 培菌初期,曝气池会出现大量的白色泡沫,严重时会堆积整个生化池走道板,这一问题是培菌初期的正常现象,只要控制好溶解氧和采取适当的消泡措施就可以解决。
8. 运行后期发现二沉池出水带有絮状生物膜、并且从沉淀池底部污泥斗易翻团状污泥,故应尽快排出沉淀池底部污泥斗污泥,减少污泥在二沉池的停留时间。
四、调试总结:经过一个半月的调试运行,污水处理站各构筑物、设备均能满足设计要求,整个系统运行正常、稳定。处理规模和出水
水质均能达到设计要求,已通过省局相关验收验收。
范文二:生物膜的应用
生物膜组成 细胞膜组成似可分为1 膜的骨架 ( 主要是脂质)o期在骨架上的物质 ( 蛋 白质等)。其化学成分一般 由类脂 (磷脂、胆固醇)、蛋 白质、糖类(糖蛋 白、糖脂)、少量的核酸、无机离子 以及水分所组成。而类脂和 蛋白质则是组成细胞膜的主要成分。 膜结构体系的基本作用是为细胞提供保护。质膜将整个细胞的生命活动保护起来,并进行选择性的物质交换;核膜将遗传物质保护起来,使细胞核的活动更加有效;线粒体和叶绿体的膜将细胞的能量发生同其它的生化反应隔离开来,更好地进行能量转换。 膜结构体系为细胞提供较多的质膜表面,使细胞内部结构区室化。由于大多数酶定位在膜上,大多数生化反应也是在膜表面进行的,膜表面积的扩大和区室化使这些反应有了相应的隔离,效率更高。 另外,膜结构体系为细胞内的物质运输提供了特殊的运输通道,保证了各种功能蛋白及时准确地到位而又互不干扰。例如溶酶体的酶合成之后不仅立即被保护起来,而且一直处于监护之下被运送到溶酶体小泡。 细胞生物膜系统是指由细胞膜、细胞核膜以及内质网、高尔基体、线粒体等有膜围绕而成的细胞器,在结构和功能上是紧密联系的统一整体,由于细胞膜、核膜以及内质网、高尔基体、线粒体等由膜围绕而成的细胞器都涉及到细胞膜或细胞器膜,所以通常称此系统为生物膜系统。细胞的生物膜系统在细胞的生命活动中起着极其重要的作用。此外,研究细胞生物膜系统在医学和生产过程中都有很广阔的前景。
生物膜结构 如今所认知的生物膜结构为流体镶嵌模型。在提出后又有多次补充,它们都是以流动镶嵌模型为前提。如晶格镶嵌模型强调了膜蛋白分子对磷脂分子流动性的限制作用,认为内在蛋白周围结合的磷脂分子为界面脂,界面脂只能随内在蛋白运动,并与内在蛋白构成晶格;板块模型则认为在流动的脂双层中存在着结构和性质不同,但有序又可独立移动的镶嵌板块,板块内不同组分的相互作用以及不同板块间的相互作用,使生物膜具有复杂的生物学功能。 膜蛋白和膜脂结构研究的最新进展主要是以下几个方面:(1)膜蛋白三维结构研究。膜蛋白可分为外周蛋白和内在蛋白,后者占整个膜蛋白的70%~80%,它们部分或全部嵌入膜内,还有的是跨膜分布,如受体、离子通道、离子泵以及各种膜酶等等。第一个水溶性蛋白质———肌红蛋白的三维结构的解析是由英国人Kendrew于1957年用X射线衍射法完成的,他因此获得了诺贝尔奖。迄今蛋白质解析出具有原子分辨率的三维结构已达20000个左右。(2)膜脂结构研究进展。膜脂主要包括甘油脂(即磷脂)、鞘脂类以及胆固醇。对于甘油脂研究较多,它们不仅是生物膜结构的骨架,其中有些成员还参与了信号转导的过程。 生物膜作用 细胞膜主要功能有(1)分隔、形成细胞和细胞器,为细胞的生命活动提供相对稳定的内部环境,膜的面积大大增加,提高了发生在膜上的生物功能;(2)屏障作用,膜两侧的水溶性物质不能自由通过;(3)选择性物质运输,伴随着能量的传递;(4)生物功能:激素作用、酶促反应、细胞识别、电子传递等。(5)识别和传递信息功能(主要依靠糖蛋白)(6)物质转运功能:细胞与周围环境之间的物质交换,是通过细胞膜的转运功能实现的 不同的生物膜有不同的功能。细胞膜和物质的选择性通透、细胞对外界信号的识别作用、免疫作用等密切相关;神经细胞膜与肌细胞膜是高度分化的可兴奋膜,起着电兴奋、化学兴奋的产生和传递作用;叶绿体内的类囊体薄膜与光合细菌膜、嗜盐菌的紫膜起着将光能转换为化学能的作用,而线粒体内膜与呼吸细菌膜则能将氧化还原过程中释放出的能量用于合成三磷酸腺苷;内质网膜是膜蛋白、分泌蛋白等蛋白质及脂质的生物合成场所。因此,生物膜在活细胞的物质、能量及信息的形成、转换和传递等生命活动过程中,是必不可少的结构。
细胞膜的应用
2.脂质体的发展和应用 1965年,英国学者Bangham 将磷脂分散在水中,然后
用电镜观察。发现磷脂自发形成多层囊泡,每层均为类似生物膜结构的脂质双分子层,囊泡中央和各层之间被水相隔开,双分子层厚度约为4纳米。后来,将这种小囊泡称为脂质体。脂质体具有分子小、扩散速度快、脂溶性好及可生物降解等优点,因此可作为药物和基因等的载体。此外,如在脂质体中掺入特异的组织和细胞的识别配体或抗体等,脂质体即可将药物和基因靶向运输,增加药物作用的局部浓度和作用时间并减少全身的毒副反应。目前,抗肿瘤化疗药物及肿瘤基因治疗的脂质体投送系统的研究和应用已取得了较大的进展。
3.细胞膜电穿孔的发展及应用 经过人们不断的研究发现: 细胞膜的绝缘强度与所加脉冲电场的幅值和持续时间有关。细胞膜的击穿电压值在 0. 5~ 1. 5 V 左右, 即: 假定细胞膜的厚度为5 nm, 当采用 Ls) ms 级的电脉冲时, 电场强度应该在1~ 3 kV/ cm 左右。通常, 幅值较低、持续时间较短的脉冲刺激仅导致细胞膜充电, 其时间常数取决于膜电容和充电通路的等效电阻。电穿孔现象发生后, 膜电导率 G( t)增大, 跨膜电流增加至 nA 数量级。如果在电流陡增前撤去外电场或者处于两脉冲的间隔时期,则膜电位 U( t) 快速衰减, 细胞膜放电, 膜屏障功能恢复, 则称此现象为可逆性电击穿( REB) ; 否则微孔数量增加或者孔径激增, 以至于膜组织断裂, 细胞死亡,称此现象为不可逆性电击穿( IREB 定性地说, 电穿孔现象是由电能( 因跨膜电位提高而产生的决定性能量) 和/ KT 能量0( 因热波动而产生的随机性能量) 共同作用而引起的。大量的观察发现:电穿孔的发生主要是一种物理现象, 同时也会引起细胞膜某些化学性质的变化, 应该建立细胞膜出现微孔的物理模型来解释细胞膜的机械特性、电特性和分子运输行为。
一、生物膜在污水处理中的应用 生物膜法是土壤自净和河床净化过程的人工模拟和强化。生物膜通常为微生物、原生动物、后生动物集群生长、繁育的膜状生物性污泥。与活性污泥法相比,耐冲击负荷、耐毒性、耐泡沫影响且无污泥膨胀问题,是生物膜法的普遍性优点。
1、多功能人工水草生物膜处理黑臭河水研究 随着工业的发展,工业超标排污造成大量的生活用水被污染,河道黑臭。因此,处理污水成为人们急需解决的问题,城市河道黑臭主要是过量纳污导致水体供氧和耗氧失衡的结果,水体缺氧乃至厌氧条件下污染物转化并产生氨氮、硫化氢、挥发性有机酸等臭恶臭物质以及铁、锰硫化物等黑色物质[1]。近年来,微生物被广泛用于黑臭河道的治理,通过选育和培养高效的微生物菌剂,能有效降解 COD、N 和P,消除黑臭,提高溶解氧水平[2-3]。但对于成分复杂的废水,单一功能的微生物难于治理多种污染物[4]。以人工水草作为生物膜载体, 结合光合细菌球形红细菌、枯草杆菌和氧化硫硫杆菌组合构建多功能人工水草生物膜系统,多功能人工水草生物膜对工业河黑臭河水具有较好的净化效果,系统克服了单一功能微生物难于处理多种污染物的缺陷,能有效地处理成分复杂的黑臭河水。
2、还原水解-生物膜工艺处理印染废水中试研究。 研究人员提出 “还原水解-生物膜”处理工艺[5],效果稳定、各处理单元布置合理,能够适应在各种生产阶段变化情况下的该厂废水的处理,处理后出水能达到并低于纺织染整工业水污染物排放的一级标准[6],显示了联合工艺优良的适应性。利用生物膜法处理剩余污泥产量少,处理效率高,具有很好的推广应用价值。
三、有机废气的生物膜处理技术 化工厂和石油化工厂在生产过程中排放各种有机废气, 其中含有醋、醇、醚、酚、睛、酸、芳烃及杂环化合物等有机污染物, 对人体及环境危害很大。与有机废气的传统处理方法相比, 生物处理法[9]的主要伏点是工艺设备简单、管理维
护方便、能耗少、运行费用低, 且去除效率也比较高。生物膜法是微生物在填料表面固定附着生长的生物处理法, 有机废气中的污染物和空气中的氧通过相间传质为微生物膜所吸附, 并发生生物氧化反应, 使有机废气得到净化。生物膜法具有以下优点:生物相多样化, 除好氧菌外还存在厌氧菌,生物膜具有较低的含水率, 单位体积内的生物量较大, 因此生物膜反应器具有较大的处理能力,工艺过程比较稳定, 动力消耗较少。由于具有以上这些优点, 生物法生物膜法在有机废气处理中的应用受到了特别的关注。
四、生物膜在血液透析中的应用 血液透析[10]是一种溶质通过半透膜与另一种溶质交换的过程。半透膜是一张布满许多小孔的薄膜,膜的孔隙大小在一定范围内,使得膜的两侧溶液中的水分子和小分子的溶质可通过膜孔进行交换,但大分子溶质(蛋白质)不能通过。根据膜平衡原理,半透膜两侧液体各自所含溶质浓度的梯度差及其他溶质所形成的不同渗透浓度,可使溶质从浓度高的一侧向浓度低的一侧移动(弥散作用),而水分子则从渗透浓度低的一侧向浓度高的一侧渗透(渗透作用),最终达到动态平衡。当血液进入透析器时,其代谢产物如尿素、肌酐、胍类、中分子物质、过多的电解质便可通过透析膜弥散到透析液中,而透析液中的碳酸氢根、葡萄糖、电解质等机体所需物质则被补充到血液中,从而达到清除体内代谢废物、纠正水电解质紊乱和酸碱失衡的目的。
总结和展望 近十年来,国际上膜分子生物学的发展速度和规模十分巨大,并取得了相当可观的成就。生物膜已成为现代生物学的一个新生长点。其原因大体是:生物膜与细胞结构和命现象的密切关系已 为人们所认识,离开对生物膜结构和功能的了解,要深人认识生命的本质是不可能的;以研究生物大分子的结构和功能为基础的分子生物学,它的进一步发展必然把视线转向比单个大分子更为复杂的超分子体系L;生物膜结构则是这种超分于体系在细胞内的基本结构形式,是研究生物大分子之间相互关系的适宜对象由于细胞学,生物化学和生物物理学等的长期发展为生物膜的基本性质,形态结构,化学成分及膜蛋白膜脂等物理 化学性质和功能的研究积累大量的比较系统的材料使人们对膜的基本认识逐渐深人,为生物膜研究的进一步发展奠定了基础;(钓由于近代许多物理学、化学等新技术和新仪器广泛渗透到生物膜的研究中,其中包括各种光谱如红外、激光拉曼、荧光光谱、旋光色散和圆二色性以及x一光衍射、中子衍射、核磁共振、顺磁共振、电子自旋标记、高分辨率电子显微镜、冰蚀刻技术和人造脂微球技术等都为生物膜的结构,膜组份的分子构型及其和膜功能的关系等提供了大量的信息,使人们在分子水平:对生物膜有了更多的了解;(5)由于生物膜在实践上有其广泛应用的可能性,很多医学、药学、工程技术、化学工业等问题的解决都对生物膜的许多基本原理的阐明提出了要求,从而把生物膜的研究扩展到更为广阔的领域,为促进膜分子生物学的发展增添了新的淮动方。可以预计,生物膜的研究在今后将有更大更快的发展。
范文三:生物膜的研究
生物膜的研究 刘攀 药1201 2302120110 生物膜组成
细胞膜组成似可分为1 膜的骨架 ( 主要是脂质)o期在骨架上的物质 ( 蛋 白质等)。其化学成分一般 由类脂 (磷脂、胆固醇)、蛋 白质、糖类(糖蛋 白、糖脂)、少量的核酸、无机离子 以及水分所组成。而类脂和 蛋白质则是组成细胞膜的主要成分。
膜结构体系的基本作用是为细胞提供保护。质膜将整个细胞的生命活动保护起来,并进行选择性的物质交换;核膜将遗传物质保护起来,使细胞核的活动更加有效;线粒体和叶绿体的膜将细胞的能量发生同其它的生化反应隔离开来,更好地进行能量转换。 膜结构体系为细胞提供较多的质膜表面,使细胞内部结构区室化。由于大多数酶定位在膜上,大多数生化反应也是在膜表面进行的,膜表面积的扩大和区室化使这些反应有了相应的隔离,效率更高。
另外,膜结构体系为细胞内的物质运输提供了特殊的运输通道,保证了各种功能蛋白及时准确地到位而又互不干扰。例如溶酶体的酶合成之后不仅立即被保护起来,而且一直处于监护之下被运送到溶酶体小泡。
细胞生物膜系统是指由细胞膜、细胞核膜以及内质网、高尔基体、线粒体等有膜围绕而成的细胞器,在结构和功能上是紧密联系的统一整体,由于细胞膜、核膜以及内质网、高尔基体、线粒体等由膜围绕而成的细胞器都涉及到细胞膜或细胞器膜,所以通常称此系统为生物膜系统。细胞的生物膜系统在细胞的生命活动中起着极其重要的作用。此外,研究细胞生物膜系统在医学和生产过程中都有很广阔的前景。
生物膜结构
如今所认知的生物膜结构为流体镶嵌模型。在提出后又有多次补充,它们都是以流动镶嵌模型为前提。如晶格镶嵌模型强调了膜蛋白分子对磷脂分子流动性的限制作用,认为内在蛋白周围结合的磷脂分子为界面脂,界面脂只能随内在蛋白运动,并与内在蛋白构成晶格;板块模型则认为在流动的脂双层中存在着结构和性质不同,但有序又可独立移动的镶嵌板块,板块内不同组分的相互作用以及不同板块间的相互作用,使生物膜具有复杂的生物学功能。
膜蛋白和膜脂结构研究的最新进展主要是以下几个方面:(1)膜蛋白三维结构研究。膜蛋白可分为外周蛋白和内在蛋白,后者占整个膜蛋白的70%~80%,它们部分或全部嵌入膜内,还有的是跨膜分布,如受体、离子通道、离子泵以及各种膜酶等等。第一个水溶性蛋白质———肌红蛋白的三维结构的解析是由英国人Kendrew于1957年用X射线衍射法完成的,他因此获得了诺贝尔奖。迄今蛋白质解析出具有原子分辨率的三维结构已达20000个左右。(2)膜脂结构研究进展。膜脂主要包括甘油脂(即磷脂)、鞘脂类以及胆固醇。对于甘油脂研究较多,它们不仅是生物膜结构的骨架,其中有些成员还参与了信号转导的过程。
生物膜作用
细胞膜主要功能有(1)分隔、形成细胞和细胞器,为细胞的生命活动提供相对稳定的内部环境,膜的面积大大增加,提高了发生在膜上的生物功能;(2)屏障作用,膜两侧的水溶性物质不能自由通过;(3)选择性物质运输,伴随着能量的传递;(4)生物功能:激素作用、酶促反应、细胞识别、电子传递等。(5)识别和传递信息功能(主要依靠糖蛋白)(6)物质转运功能:细胞与周围环境之间的物质交换,是通过细胞膜的转运功能实现的
不同的生物膜有不同的功能。细胞膜和物质的选择性通透、细胞对外界信号的识别作用、免疫作用等密切相关;神经细胞膜与肌细胞膜是高度分化的可兴奋膜,起着电兴奋、化学兴奋的产生和传递作用;叶绿体内的类囊体薄膜与光合细菌膜、嗜盐菌的紫膜起着将光能转换为化学能的作用,而线粒体内膜与呼吸细菌膜则能将氧化还原过程中释放出的能量用于合成三磷酸腺苷;内质网膜是膜蛋白、分泌蛋白等蛋白质及脂质的生物合成场所。因此,生物膜在活细胞的物质、能量及信息的形成、转换和传递等生命活动过程中,是必不可少的结构。
细胞膜的应用
三、生物膜的应用
生物膜的应用很广泛,涉及医学、农业、工业、环保等领域。
1.生物膜仿生学技术
在仿生学研究领域里,科学家提出人工模拟生物膜的设想并进行了试验。人工模拟生物膜就是以某些高分子有机化合物为材料,构建半透膜。这些有机化合物能对物质进行分离、浓缩、提取、纯化,可广泛应用于食品工程、医学、环境保护等实际生产领域,促进临床医疗效果,改进生产工艺提高生产的经济效益,解决污水处理,保护环境以及海水淡化处理等。磷酰胆碱(PC)基团是磷脂双分子层外层膜磷脂(卵磷脂)的亲水头部,研究表明,带有等量正负电荷的PC基团是血红细胞外层膜抗凝血的原因。目前,含PC基团的聚合物的研究在各个领域都迅速扩展,例如材料表面改性、药物控释、化妆品等。
2.脂质体的发展和应用
1965年,英国学者Bangham 将磷脂分散在水中,然后用电镜观察。发现磷脂自发形成多层囊泡,每层均为类似生物膜结构的脂质双分子层,囊泡中央和各层之间被水相隔开,双分子层厚度约为4纳米。后来,将这种小囊泡称为脂质体。脂质体具有分子小、扩散速度快、脂溶性好及可生物降解等优点,因此可作为药物和基因等的载体。此外,如在脂质体中掺入特异的组织和细胞的识别配体或抗体等,脂质体即可将药物和基因靶向运输,增加药物作用的局部浓度和作用时间并减少全身的毒副反应。目前,抗肿瘤化疗药物及肿瘤基因治疗的脂质体投送系统的研究和应用已取得了较大的进展。
3.细胞膜电穿孔的发展及应用
经过人们不断的研究发现: 细胞膜的绝缘强度与所加脉冲电场的幅值和持续时间有关。细胞膜的击穿电压值在 0. 5~ 1. 5 V 左右, 即: 假定细胞膜的厚度为5 nm, 当采用 Ls) ms 级的电脉冲时, 电场强度应该在1~ 3 kV/ cm 左右。通常, 幅值较低、持续时间较短的脉冲刺激仅导致细胞膜充电, 其时间常数取决于膜电容和充电通路的等效电阻。电穿孔现象发生后, 膜电导率 G( t)增大, 跨膜电流增加至 nA 数量级。如果在电流陡增前撤去外电场或者处于两脉冲的间隔时期,则膜电位 U( t) 快速衰减, 细胞膜放电, 膜屏障功能恢复, 则称此现象为可逆性电击穿( REB) ; 否则微孔数量增加或者孔径激增, 以至于膜组织断裂, 细胞死亡,称
此现象为不可逆性电击穿( IREB
定性地说, 电穿孔现象是由电能( 因跨膜电位提高而产生的决定性能量) 和/ KT 能量0( 因热波动而产生的随机性能量) 共同作用而引起的。大量的观察发现:电穿孔的发生主要是一种物理现象, 同时也会引起细胞膜某些化学性质的变化, 应该建立细胞膜出现微孔的物理模型来解释细胞膜的机械特性、电特性和分子运输行为。
目前利用电穿孔特性的主要趋势是: 根据电穿孔时细胞膜天然屏障功能的减弱或丧失, 导致离子和溶水性分子极易渗透过膜的特性, 向细胞中导入微粒, 其应用领域包括以下 5 个方面:DNA的电转染,细胞膜蛋白质的电导入,电穿孔促进药物运送,电穿孔促进细胞融合,电穿孔促进皮肤药物传递。
总结和展望
近十年来,国际上膜分子生物学的发展速度和规模十分巨大,并取得了相当可观的成就。生物膜已成为现代生物学的一个新生长点。其原因大体是:生物膜与细胞结构和命现象的密切关系已 为人们所认识,离开对生物膜结构和功能的了解,要深人认识生命的本质是不可能的;以研究生物大分子的结构和功能为基础的分子生物学,它的进一步发展必然把视线转向比单个大分子更为复杂的超分子体系L;生物膜结构则是这种超分于体系在细胞内的基本结构形式,是研究生物大分子之间相互关系的适宜对象由于细胞学,生物化学和生物物理学等的长期发展为生物膜的基本性质,形态结构,化学成分及膜蛋白膜脂等物理 化学性质和功能的研究积累大量的比较系统的材料使人们对膜的基本认识逐渐深人,为生物膜研究的进一步发展奠定了基础;(钓由于近代许多物理学、化学等新技术和新仪器广泛渗透到生物膜的研究中,其中包括各种光谱如红外、激光拉曼、荧光光谱、旋光色散和圆二色性以及x一光衍射、中子衍射、核磁共振、顺磁共振、电子自旋标记、高分辨率电子显微镜、冰蚀刻技术和人造脂微球技术等都为生物膜的结构,膜组份的分子构型及其和膜功能的关系等提供了大量的信息,使人们在分子水平:对生物膜有了更多的了解;(5)由于生物膜在实践上有其广泛应用的可能性,很多医学、药学、工程技术、化学工业等问题的解决都对生物膜的许多基本原理的阐明提出了要求,从而把生物膜的研究扩展到更为广阔的领域,为促进膜分子生物学的发展增添了新的淮动方。可以预计,生物膜的研究在今后将有更大更快的发展。 参考文献生物膜的研究进展 王文军 王文华 黄亚冰 张学林
细胞膜的性质及化学组成 郑涛
聚焦“生物膜的结构、功能和应用” 张红霞
细胞膜电穿孔的机理及应用前景的初步探讨 熊兰 孙才新 廖瑞 金 胡丽娜 李大强
仿细胞膜结构聚合物的合成及其应用研究 杨珊
Taylor G T et al. Influence of Surface Properties on Accumulation of Conditioning Films
and Marine Bacterial on Sub-strata Exposed to Oligotrophic Waters. Biofouling.
范文四:生物膜法的分类
生物膜法的分类
目前我国污水处理行业中常用的活性污泥法具有成本高、对水质和水量适应性较差、容易造成二次污染等缺点,而生物膜法的出现有效的改变了这种状况,为我国的污水处理行业带来了新的选择。
生物接触氧化法
生物接触氧化法实际上是一种浸没曝气式生物滤池,是曝气池与生物滤池相结合产生的综合性污水处理工艺,同时具备两种处理方法的优点,具有容积负荷高、抗冲击负荷力强的特点。但生物接触氧化法的滤料容易发生堵塞,增加了管理的难度。
生物流化床
生物流化床技术是利用气体或液体,使附着微生物的固体颗粒状滤料呈流态化,对污水进行净化的技术。生物流化床法充分利用了微生物不同生命活动阶段的特征,根据微生物的生长特点将处理阶段划分为固定床阶段、流化床阶段、液体输送阶段三个阶段
移动床生物膜反应器
,是介于生物接触氧化法与生物流化床法之间的一种新型生物膜污水处理工艺,很好的解决了生物接触氧化法中滤料堵塞的问题,同时也克服了生物流化床中三相分离困难的缺点,具有良好的处理效果。
范文五:细胞的生物膜系统
细胞的生物膜系统
一,教材分析
本节内容选自人教版生物必修一第三节的一个部分, 是前几章的一个 总结,本节内容安排在细胞膜和细胞器之后,有重要意义,根据结构 决定功能,对任何结构来说,功能的了解特别重要,因此本节的重点 和难点在结构和功能的联系, 而生物膜的概念也是重点, 需要花大量 时间。概念图
细胞膜
结构 作用
生物膜系统
细胞器膜 功能
细胞核膜 联系
二,学习者分析
本节课面对的是高一学生, 他们对课程还没有熟悉的了解, 因此尽可 能的将内容细化简单化, 一步步带领他们进入课程, 他们对细胞的概 念其实很模糊, 因此要形象的向学生说明细胞的具体形态, 才能谈细 胞膜系统。学生是学习的主导者,是学习的主体,课堂效率好坏的决 定者。课堂教学设计的活动应该以调动学生的积极性为主。 三,教学目标
1,掌握细胞生物膜系统的概念和作用
2,理解细胞的生物膜系统在结构和功能上的紧密联系的统一整体。 四,教学重点和难点
1,各种生物膜系统之间的联系、
2,生物膜系统的概念和意义
五,教学方法:讲授法
六,教学时间, 10分钟
七,教学过程
导入,
师:老师同学们下午好, 大家听过系统吗?那什么是系统呢?你们可 以举出几种系统吗?
生,神经系统,组织系统,灌溉系统
师,恩,很好。我这呢,给大家一个准确的概念,系统呢是指彼此之 间相互联系, 相互依赖的组分有规律的结合而形成的整体, 那咱们知 道细胞中很多细胞器都有膜,如内质网,高尔基体,叶绿体等等,除 此还有细胞膜,核膜,那它们就构成我们今天学习的生物膜系统。既 然是系统,则一定存在联系,哪接下来咱们就来学习一下。
新课学习
师,首先大家打开书 49页图 3-9大家看一下是不是内质网膜向内与 核膜相通, 向外与细胞膜相连呢, 内质网膜向内与核膜相通保证了核 质的交流,那与细胞膜相连呢,就完成一些糖原,脂质等物质向胞外 运输。这个过程大家看到核膜内质网膜,细胞膜彼此相通,这是第一 个联系。(板书,联系 1;彼此相通)那是不是所有的细胞器都是这 样呢?答案是肯定不是, 那大家还记不记得上节课说的分泌蛋白的合 成与运输过程呢?大家一起回忆一下吧, 首先在内质网上的核糖体由 氨基酸合成肽链, 然后到内质网上进行粗加工, 此时的蛋白质还未成 熟,需要高尔基体的进一步加工,成为成熟的蛋白质,那内质网和高
尔基体没有直接联系,那怎么联系呢?对,通过囊泡,内质网向外出 芽形成囊泡包裹着蛋白质到达高尔基体,囊泡成为高尔基体的一部 分,相同的道理,运输到细胞外。那整个过程需不需要能量呢,那能 量来自于哪呢?线粒体。这个过程蛋白质的合成,加工,运输,细胞 器之间没有直接联系, 而是通过囊泡。 那总结就是, 结构上, 细胞膜, 内质网膜,高尔基体膜之间可以相互转化。功能上,相互配合,彼此 联系。那现在总结一下生物膜系统的概念。找一个同学
生, 是由细胞膜, 核膜和像内质网膜, 高尔基体膜等构成的细胞器膜, 构成的结构相似,功能相互配合的统一整体。
师,恩,很好,今天我们的课就上到这,大家课后预习一下生物膜系 统的作用,下节课共同学习,下课