范文一:太阳能吸热材料的研究.
太阳能吸热材料的研究
目录
论绪 . ............................................................................................................ 1
第一章 太阳能吸热材料的概述........................................................... 2
1.1太阳能吸热材料的发展现状 ......................................................................... 2
1.2 太阳能吸热材料的概念与分类 .................................................................... 2
第二章 几种太阳能吸热材料的光学性能和制备工艺 .......................... 2
2.1硅溶胶吸热涂料 ............................................................................................. 2
2.2 电镀吸收涂层 .............................................................................................. 4
2.2.1 黑铬涂层 .................................................................................................... 4
2.2.2黑镍涂层 ..................................................................................................... 7
2.2.3黑钴涂层 ..................................................................................................... 8
2.3电化学表面转化涂层 ..................................................................................... 9
2.3.1铝阳极氧化涂层 ......................................................................................... 9
2.3.2 CuO转化涂层和钢的阳极氧化涂层 ....................................................... 10
2.4 真空镀涂层 .................................................................................................. 10
第三章 总结 . ........................................................................................ 13
3.1 太阳能吸热材料的发展趋势 ...................................................................... 13
3.2 结论 .............................................................................................................. 13 参考文献: . .............................................................................................. 14
论绪
随着人类社会的不断发展,人与自然的矛盾也愈来愈突出。目前全世界范围面临的最为突出的问题是环境与能源,即环境恶化和能源短缺。面对这样一种局面,各国政府采取正确的对策来处理,其中最为有效的方法就是发展新材料及相应的技术。事实上几年来人们对太阳能吸热材料的研制和利用,已显示了积极有效的作用。这一新型功能材料的发展,既可解决人类面临的能源短缺,又不造成环境污染。尽管太阳能吸热材料的成本还较高和性能还不够完善,但随着材料科学的不断进步,太阳能吸热材料愈来愈显示了诱人的发展前景。可以预见,在下个世纪,太阳能吸热材料将扮演更为重要的角色。
大阳能是人类取之不尽,用之不竭的可再生能源,也是清洁能源,不产生任何的环境污。二十世纪初人们就研究如何收集利用太阳能,从最早的太阳能动力装置研究到太阳能平板集热器的研究,为解决能源短缺问题都是重大的进步。为了充分有效地利用太阳能,人们发展了多种太阳能材料,并且加强了太阳能基础理论和基础材料的研究,取得了太阳选择性涂层技术上的重大突破。70年代以后人们研制成许多新型选择性涂层并进行批量生产和推广应用,目前已研制成上百种选择性涂层。我国自70年代开始研制选择性涂层,取得了许多成果,并在太阳集热器上广泛使用,效果十分显著。为此,随着科技的不断进步,新型太阳能吸热材料不断涌现,并且会是更为经济,性能更好的材料。本文主要是通过查阅资料和相关数据的分析,介绍多种太阳能吸热材料的制备工艺、吸热性能、经济性等。综合评估材料的各方面性能,并提出一些看法。多种太阳能吸热材料制备成本较高,获取一种廉价、使用性高、耐候性好且具有一定选择性的太阳能吸热材料,一直是人们关注的问题。
第一章 太阳能吸热材料的概述
1.1太阳能吸热材料的发展现状
人类很早以前就直接或间接地利用太阳能,但是长期以来太阳能利用一直发展缓慢。随着20世纪70年代的能源短缺、全球环境污染问题日趋严重,迫使人们发展利用太阳能的新型材料,而且各国在新领域有新兴技术的迅猛发展,使得太阳能材料的研究进入新高潮。为此,人们发展了多种太阳能吸热材料。
1.2 太阳能吸热材料的概念与分类
太阳能吸热材料是一种能将太阳辐射能转换热能的功能材料。太阳能吸热材料可分为选择性和非选择性吸热材料。非选择性吸收涂层是指其光学特性与辐射波长无关的吸收涂层;选择性吸收涂层则是指其光学特性随辐射波长不同有显著变化的吸收涂层。本文主要介绍选择性吸热材料。
第二章 几种太阳能吸热材料的光学性能和制备工艺
2.1硅溶胶吸热涂料
太阳能吸热涂料是一种用它制成的膜能把太阳辐射能转换热能的功能材料。这种太阳能吸热涂料制成的膜在室外环境下工作,必须具备良好的耐候性、防水性。在国内很多采用了油性涂料,如黑板漆,或者黑板漆中加入石墨,或者酚醛黑漆中调入沥青,这些都是为了保持膜的良好防水性能。但是,这类涂料制成的膜为有机物,缺点是它是一种非选择性吸热涂料,吸收率和发射率都高,热利用率低下。日本Descente Ltd 公司选用CrC 、Al 做发色体,使得涂料的吸热选择性得到了提高,Boris Kidric Inst 公司用有机炭黑配以二氧化硅做发色体,也提高了吸热选择性。美国Martin Corp 公司将F-6331 铁黑做发色体,水玻璃作为膜物,虽然吸收率很高,但防水性差。北大刘胜峰等人使用硅氧烷
聚合物作为膜物,铁锰铜氧化物做发色体,在铝板上成膜,n=0.958,£=0.71; 若用丙烯酸树脂改性的硅氧烷聚合物做膜物,n=0.958,£=0.419,但是这样的成本较高,从经济性考虑这种材料还是有欠缺的。所以,想要获得一种廉价、耐候性好、具有防水性且具有一定选择性的太阳能吸热涂料,成为了人们关注的问题。
涂料是由成膜物和发色体组成的。硅溶胶吸热涂料的成膜物选用硅溶胶做膜物,发色体选用铁粉。硅溶胶是聚硅酸的水性胶体,白色荧光,呈半透明状。胶体粒子很小,半径为15nm ,由胶核、密集层、扩散层组成。在密集层和扩散层之间,靠阳极电位为-91mV ,靠阴极电位为-9.6mV 。这样的一种胶粒结构容易产生交联、凝聚,尤其是当外界有少量的离子电荷存在时,硅溶胶就会立即出现凝胶现象。密集层中有氢氧化硅存在,氢氧化硅本省就容易发生缩合脱水,至使胶核交联成了更大的网状结构。在这种网状结构中有一些空隙,将少量的聚丙烯酸酯乳液或其他的高分子乳液注入这种空隙中,按胶粒间离子电荷分布定位,用这种方法提高了网状结构的强度,从而获得了更加坚固的表面膜。由于膜物的主要成分是硅氧体,所以其耐候性能自然是比较良好的。
发色体的选用依据是膜的太阳能转化实际上是一种光谱现象,取决于发色体的价电子性质。固体发色体价电子行为由能带理论中的能隙概念描述,这个概念考虑了发色体的化学健特征和晶体场特征,因此与只以元素的电负性大小作为选材依据相比。更符合实际情况。只要发色体的键能隙与太阳光的光量子能量匹配,发色体就会产生吸光现象.太阳光能量密度集中在0.4~0.8 m 波段,对应的光量子能量为1.543~3.085eV 。与这种光量子能量匹配得较好是金属、台金、
半导体的健能隙。发色体的粒径选择对膜的吸光特性也很重要。达到胶体粒径时,束缚能级将起很大作用。
硅溶胶加少量聚丙烯酸酯乳液做成膜物,选用1p .m 粒径铁粉做发色体,体积浓度取30%,经研磨,形成均匀分散系,分别涂布在铝板和石英玻璃上,经 l h 固化,便成膜。膜在水中浸溃1个月,没有发生脱落现象。对石英玻璃扳上的膜做 30Onm 、320nm 、500nm 和lO00nm 紫外、可见光透视,透视率等于零;1000~2600nm红外光透视,透视率为5—5O% ,具有光谱选择性。涂在铝板上的膜进行漫反射
测试。由图1可见,在可见光区,反射率很小,约为6%;近红外区逐渐增大。透视率等于零。可见光区的吸收率a=0.940。图2给出了这种膜的全发射率,可见测定温度为160~C时全发射率c=0.41。
图 1 铝板膜漫反射
图 2膜的全发射曲线
所以,以硅溶胶做膜物、铁粉做发色体的太阳能吸热材料是一种廉价、耐候性良好、具有防水性和一定选择性的涂料。
2.2 电镀吸收涂层
2.2.1 黑铬涂层
黑铬涂层是一种对太阳能具有选择性吸收的涂料。本文主要介绍采用粉末火焰喷涂法,在底层铝板上喷涂黑铬,制成太阳能选择性吸收涂层,其吸
收率为0.91,发射率为0.15。这种选择性吸收涂层,工艺简单,成本低,性能稳定,光谱选择性好。所以,黑铬涂层是一种既能快速大批量低成本生产,又有光谱选择性好的涂料,对太阳能热利用具有重要意义。
粉末火焰喷涂的原理如图3所示。燃料气体和氧气混合后从喷抢喷嘴的环形孔喷出,产生燃烧火焰。在喷枪上设有盛放黑铬粉末的粉斗,利用喷出气流产生的负压,抽吸粉斗中的黑铬粉末,使其随气流从喷嘴中心喷出进入火焰,被加热熔化后以一定的速度喷射到经过表面处理(除油、喷沙) 的铝板上,形成黑铬涂层。
图3 粉末火焰喷涂原理图
粉末火焰喷涂法在铝板上制备的黑铬涂层,表面呈细微磨沙状,黑色,均匀无色差。图4所示为实验得到的黑铬涂层反射率光谱曲线。从该图可见,它具有良好的选择性,在可见光波段反射率小,即吸收率大;在红外线区具有较大的反射率,即较小的发射率。由测试数据计算得到,其可见光波段的平均吸收率约为0.91.而在红外区的平均发射率约为0.15。为了观察粉末火焰喷涂法制备的黑铬涂层的实际效果。我们分别将喷涂黑铬涂层的铝板和涂黑板漆的铝板作为集热板,装在如图5所示的太阳热水器实验装置上,进行实验比较。铝板的面积300mm ×500mm 、水箱的容积为185mm ×200mm ×155mm ,塑料壳体。隔热板用聚氨脂发泡材料,热管传热。测试数据和计算结果列于表l 。
图4 反射率光谱曲线
图5 太阳热水器试验装置
用粉末火焰喷涂法制备黑铬选择性吸收涂层,设备投资少,工艺简单,生
产效率高,成本低,制备大面积工件容易,适合大规模推广应用。
2.2.2黑镍涂层
黑镍涂层的研究主要是指黑镍、铜、玻璃选择性吸收涂层的制备过程,分析制备条件和膜层厚度及基材表面光洁度对光学性能的影响,从而获得较为合理的制备条件和膜层厚度,以及最佳的表面光学性能。
选择性吸收涂层是太阳能利用的一个重要环节, 它对系统转换效率有较大影响。即使一个设计合理的系统,如果涂层的光学性能不稳定,整个系统的热性能就得不到保证。太阳能的利用由中温向高温方向扩展,黑镍涂层在较大温度范围内性能都比较稳定。选择性吸收涂层有吸收与反射组合膜层、表面膜层、共振散射膜层和复合干涉吸收膜层4种类型,其中吸收与反射组合膜层和复合干涉吸收膜层应用最为常见。吸收与反射组合膜层一般借助于半导体材料的吸收作用和金属底材表面的红外反射设计而成. 它利用半导体物质的电子结构,选择天然或人工合成的具有适当能隙的半导体材料。非吸收介质膜与金属底材或底材上的反射膜复合时对某一波长的光会产生破坏性干涉效应,此效应发生在太阳光谱的峰值波长时就会吸收该波长的太阳能。单一干涉膜只能使太阳光谱中某一波长的反射率等于零,要吸收整个太阳光谱波段的太阳能,就要设计复式多层膜。外层膜对小于临界波长的辐射有较高的吸收性,对大于临界波长的辐射有良好的透射性,所以底层表面金属膜高反射性的吸收与反射组合膜层,应选择黑镍-铜-玻璃基材膜系结构。黑镍薄膜属于半导体吸收类型,对于临界波长的辐射能有较高的吸收率。基材上新生的银、铜、铝金属膜,在光谱波长大于3um 范围内, 反射率都在95% 以上,因此,从低成本和工艺简便角度考虑,可选用化学镀铜为高红外反射膜,以电镀黑镍层为高吸收外层。镀层的厚度和表面微观形状对A 和E 有一定影响,所以必须在工艺上控制电镀时间、电流密度及镀液温度,以便控制膜层的厚度和表面质量。
涂层厚度对吸收率和发射率有一定影响。随涂层厚度的增加,吸收率及发射率将随之增加。涂层变薄时吸收率与发射率下降。所以,对不同对象使用选择性吸收涂层,应该根据使用条件设计出最佳涂层,单纯性追求吸收率和吸收率与发射率之间的比值的最大化是不经济的。
基材表面光洁度对黑镍涂层的光学性能是很有影响的。光玻璃表面涂层吸收率与研磨玻璃的吸收率相比之下并不是有很大的差别,而发射率却远小于研磨玻璃,研磨玻璃的吸收率与发射率之比远大于光玻璃。原因在于涂层表面光滑程度对涂层的光学性能有较大影响。电镀涂层的表面粗糙度远小于研磨玻璃,研磨玻璃为基材的黑镍涂层其表面粗糙度大于光玻璃,这就增加了表面涂层表面反射光线的二次吸收。再者,黑镍涂层的吸收主要为半导体吸收效应,所以吸收率增加不多,但涂层的发射率与单位面积上的实际粗糙面积成正比,所以,研磨玻璃的发射率值大幅度增加,吸收率与发射率之比将大幅度下降,影响了黑镍涂层的性能。
2.2.3黑钴涂层
黑钴涂层的主要成分是钴-镍硫化物,具有蜂窝网状结构,应用于真空玻璃集热管。作者用乙酸钴和硫酸镍混合盐类制取钴-镍混合硫化物涂层,这样可以降低成本、提高涂层材料的热稳定性。
在 2mm厚的普通窗玻璃上用化学方法镀上一层厚度大于0.2um 的光亮铜层,然后用电化学法沉积钻、镍硫化物,形成吸收-反射双层选择性涂层。电镀阳极用镍板或铝板。作者制备了硫化镍涂层、硫化钴涂层、钴-镍硫化物涂层进行对比,如图6:
图6 三种涂层吸收率曲线
N-28:硫化镍涂层;B-458:硫化钴涂层;Z-239:钴-镍硫化物涂层
作者对三种涂层的热稳定性分析,钴-镍硫化物涂层的热稳定性优于硫化钴涂层,而硫化镍涂层最差。硫化镍涂层的表面形貌呈圆珠粒状,硫化钴涂层表面呈颗粒状,钴-镍混合硫化物涂层,在较大的块状颗粒中,夹杂着小而圆的硫化镍圆珠状颗粒,以致使其表面比较致密,故其热稳定性提高。
2.3电化学表面转化涂层
2.3.1铝阳极氧化涂层
铝阳极氧化涂层是一种多孔膜,孔隙率达22%,电解着色时金属易沉积在微孔中。其中,铝氧化涂层着色有多种工艺,其中电解着色铝阳极氧化选择性吸收涂层具有良好的光学性能。选择性吸收涂层可用多种方法制备。采用阳极化电解着色方法在工业纯铝及部分铝合金底材上制备了选择性吸收涂层,它不仅具有良好的选择性吸收性能,而且可进行大规模的生产。它是金属镍粒子填充在多孔性氧化铝膜中构成的一种复合涂层。其复合组份,尤其是复合组份的浓度或梯度变化时,对涂层的光学性能有很大影响。研究这种复合涂层的选择性吸收机制,建立涂层成份、结构和表面形貌与光学性能之间关系,对选择性吸收涂层的研制和改进是有意义的。
在铝阳极氧化涂层制备中,以工业铝或部分铝合金为底材,经去油、清洗,放入磷酸溶液中阳极氧化,产生一层几乎透明的氧化膜;再在含有硫酸镍的电解液中进行交流电解着色,使涂层变为黑色。通过对电压、时间、槽温及溶液成份的控制,可获得有良好选择吸收性能的涂层。在太阳光谱范围,膜层的反射率很小,即吸收率很大;而在长波红外范围,膜层的反射率很高,即发射率很低。反射率发生突变的位置与Ni 含量有关。当Ni 含量增加时,长波方向移动。在Ni 含量的计算范围内,随Ni 的增加,吸收率变化不大,而发射率不断上升。因而,为获得具有良好光谱选择性能的膜层,应适当控制Ni 的含量。
图7 光谱反射率的理论与实验曲线
由图 7看出,实际样品的光谱反射率曲线与理论计算曲线在太阳光谱范围内基本上是一致的。其太阳吸收率理论值为0.95和热发射率理论值为0.10,其吸收率实验值为0.95和热发射率实验值为0.07。所以,铝氧化涂层具有牢固、稳定、耐晒、耐磨、耐蚀等优良光学性能。
2.3.2 CuO转化涂层和钢的阳极氧化涂层
以阳极氧化法制取的CuO 转化涂层,NaOH 电解液的浓度为1mol /L ,电流密度为2mA /cm2,温度为50~57℃。涂层的吸收比可达0.88~0.95,法向发射比为0.15~0.30。这种CuO 涂层有一层黑色绒面,保护不好,会导致吸收比的降低。钢的阳极氧化工艺,在其表面可形成阳极氧化涂层,其吸收比达0.92~0.94,发射比为0.31~0.32,抗紫外线和耐潮湿性能良好。
这两种涂层都有自己的优点,但是与铝氧化涂层相比,却没有铝氧化涂层的稳定、牢固等光学性能。
2.4 真空镀涂层
硫化铅是一种黑色半导体,禁带宽度等于0.4电子伏特,对应的截止波长为3.1微米。由硫化铅的红外光谱吸收曲线(如图8所示) 知, 波长小于3微米的太阳辐射,几乎全部被吸收,而大于3微米的辐射,随波长的增加,透射率越来越大。因此,硫化铅是一种比较理想的太阳能选择性吸收材料。
图8 PbS红外吸收光谱
由于选择性吸收涂层对红外光谱是透明的,故涂层的衬底材料应具有相应的光谱特性,在一般情况下, 绝大多数金属都具有一定程度的光谱选择性,但作为选择性吸收涂层的衬底材料,必须挑选那些在波长大于2微米的范围内,具有很高反射率的金属。选用铝板作PbS/Al/Al的衬底,再经过细致的表面抛光处理,这样的衬底材料就具有高红外反射率。PbS/Al/Al是一种多层干涉吸收涂层。这种PbS/Al/Al选择性吸收涂层的光谱特性如图9所示。该涂层在太阳光谱范围内
图9 PbS/Al/Al多层膜的光谱吸收吸收率曲线
具有很强的吸收能力,这是由于硫化铅是一种吸收率很高的直接带隙半导体,
只需很薄(如0.1微米)的膜,即能强烈地吸收太阳辐射。在PbS/Al/Al 膜系中,铝膜和硫化铅膜都很薄,我们采用真空蒸发淀积方法制备这种大面积的涂层。作者用真空镀膜机进行实验,得出平均吸收率为0.963,平均发射率为0.200。所以,真空镀涂层采用真空蒸发也可以得出光学性能很好的涂层材料。
第三章 总结
3.1 太阳能吸热材料的发展趋势
随着科学技术的不断进步,人类对太阳能吸热材料的不断研究,将不断地出现更为经济,性能更好的新型太阳能材料。从科学和经济发展来看,这都具有重大意义的。如果能利用太阳能电池发展太阳能电动汽车,不仅能节省大量矿物燃料,而且能从根本上改善环境污染状况。同样,新型的太阳能吸热材料的研发和使用,既可解决人类面临的能源短缺,又不造成环境污染,所以从发展经济、提高产品档次和开发新产品来看,太阳能材料及相应技术产品也是有非常广阔发展前景的。还有太阳能利用日益与建筑结合在一起,建筑材料也有向功能化发展的趋势,而大阳能利用就是一个重要的结合对象。如能结合太阳能利用特点,研究开发新型太阳能材料,更多的新产品将服务于人类。通过利用这些太阳能建材,使人们将建筑物与太阳能利用得到完善的结合。
3.2 结论
总的来看,太阳能利用的水平,最终取决于太阳能材料的发展水平。新材料、新工艺的出现,可进一步提高人类利用太阳能的水平。(1)以硅溶胶作为膜物,加入少量的聚丙烯酸酯乳液,以铁粉作为发色体,制成的太阳能吸热涂料是一种廉价、耐候性良好、具防水性和一定选择性的涂料。(2)采用粉末火焰喷涂法制备的黑铬太阳能选择性吸收涂层,工艺简单,成本低,性能稳定,光谱选择性好。(3) 铝氧化涂层着色有多种工艺,其中电解着色工艺获得的涂层,具有牢固、稳定、耐晒优良特性,并且可进行大规模生产。
参考文献:
[1]吴绍情. 杨琨 一种太阳能吸热涂料[新能源学报]1996.18(3)
[2]吴桂初. 梁素珍 粉末火焰喷涂法制备黑铬太阳能选择性吸收涂层的实验研究[太阳能学报]1999.20(2)
[3] 刘胜峰 太阳能光谱选择性吸收涂屡新型颜料的合成研究[太阳能学报] 1994.15(3):300-304
[4]胡文旭 黑镍涂层的制备与光学性能研究[太阳能学报]2001.22(4)
[5] Granqvist G G, et al. Recent advances in electrochromics for Smart windows applications [Solar Energy] 1998.64(4)
[6] 胡文旭. 鲁百佐 黑镍选择性吸收涂层光学性能研究[陕西师范大学学报]2003.30(4)
[7] 郭信章 真空镀膜工艺对选择性吸收膜性能的影响[太阳能学
报]1995.16( 2)
[8] 战余英. 朱玉华. 屈庆福 钻-镍硫化物选择性黑钻涂层[太阳能学报]1985.6(1)
[9] 赵玉文. 黄涵芬. 张宝英 阳极氧化电解着色铝选择性吸收涂层的光学性能研究[太阳能学报]1985.6(2)
[10] 同悦昌. 仲永安 大面积真空镀PbS/Al/Al太阳能选择性吸收涂层的研制
[太阳能学报]1987.8(1)
范文二:太阳能吸热材料涂敷工艺
太阳能吸热材料涂敷工艺
1、涂料涂层
该种涂层采用涂漆法制作工艺,在集热板迎光面涂有丙烯酸黑液,从而制得选择性涂层,因涂料是由一定光学性能的颜料和粘合剂组成, 使涂层具有一定的选择吸收性,并且成本低,工艺设备简单,但是漆涂层不能制得很薄,一般都在数微米以上,因而发射率较高,选择性差,一般αs=0.87~0.92,ε=0.3~0.6。使用该类型膜层的集热器由于热性能较差,使用寿命短,因此在市面上并未被广泛应用,曾在中国云南地区进行过范围性推广,现在浙江部分地区仍使用。
2、阳极氧化涂层
制备工艺的基本过程是将铝片(或铜铝复合板芯)在稀磷酸溶液中阳极氧化, 在铝表面形成多孔氧化膜,然后在硫酸镍或硫酸亚锡溶液中交流电解,镍锡离子还原沉积于氧化的孔隙中,形成具有光谱选择的表面,其αs=0.89~0.91,ε≈0.13~0.15。。
该涂层多用于铜铝复合型平板集热器,也称吹胀型平板集热器。此类产品是由澳大利亚人发明制造的,且在澳洲十年前已被淘汰使用。该板芯在生产的过程中,铜管被压扁后再用高压枪吹胀(故又名吹胀型),铜管的结构遭到破坏;另外由于涂层铝板基材与铜管的膨胀系数不同,经过长时间白天集热及晚上冷却,膜层与铜管流道间出现缝隙,导致传热不畅,在有寒冷地区使用寿命一个冬天。该产品在生产时要消耗大量的玻璃、型材、铜管和其他材料,在它的寿命期限里能够节省的能源还没有生产它时消耗的多,故又被称作是高污染的节能产品。
3、 磁控溅射涂层
该工艺采用真空磁控溅射镀膜的方法,获得多层薄膜,通过多层膜的光学干涉效应获得选择性涂层。目前国外公司采用电子束蒸发的方法将钛和石英在电子射线枪的作用下汽化,汽化物在加入氮和氧后发生化学反应生成氮氧化钛,最后在金属(铜)带上沉积冷凝而成涂层。该膜层生产过程中不会产生污染,且自动化生产程度高。该膜层具有明显太阳光谱选择性,吸收率αs=0.91~0.96,ε<0.1。 磁控溅射氮氧化钛涂层运用于平板太阳能集热器还是近十年的事情。目前,使用该膜层的平板太阳能集热器生产厂家逐渐增多。但国外平板集热器内部大多采用抽真空或充氮气工艺处理,而国内产品膜层基本都和空气接触。已经投放到市场的该类型产品还没有经过长时间的实践检验,并且实用中已经发现有的产品其耐候性能不是很理想,即时间久了就会出现性能衰减甚至涂层脱落。
4、 黑铬涂层
黑铬涂层是采用电镀方法在太阳能集热板上制备黑铬选择性电镀层,普通黑铬涂层类集热板的吸收率在αs=0.93~0.97,发射率在ε=0.07~0.14之间。
采用电镀黑铬工艺 需要先在镀件上打底层,如镀覆铜、镍层来增加附着力,然后才能镀黑铬,对工艺要求较高。
范文三:太阳能热发电吸热器材料
Optica Applicata, Vol. XL, No. 2, 2010
High porosity materials as volumetric receivers for solar energetics
T HOMAS FEND
German Aerospace Center, Institute of Technical Thermodynamics, Solar Technology Department, Linder Hoehe, 51143 K?ln, Germany; e-mail: Thomas.Fend@dlr.de
This paper gives a brief overview on the research activities of the Solar Technology Departmentof the German Aerospace Center on porous materials for solar tower technology. Firstly, a briefintroduction to solar tower technology is given. Then, the function of the central component oftower technology, the volumetric air receiver, is described in detail and examples as well asexperimental results of receiver tests are given. Results of numerical studies are presented, whichhave been carried out to characterize air flow stability in receiver systems. Approaches presentlyused to model the interior temperatures of the receiver are described. Next spin-off applicationssuch as particle filters or cooling systems are presented, which are dominated by similar physicalphenomena and which can be treated with the same experimental and numerical methods. Finally,information is given about the Jülich Solar Tower, which is the first test power station that makesuse of the solar air receiver technology.
Keywords: solar tower technology, porous materials, volumetric air receiver, concentrating solar power.
1. Introduction
Solar tower technology is a promising way to generate large amounts of electricityfrom concentrated solar power in countries with high solar resources such as NorthAfrica and the Middle East, India, Australia or parts of North and South America,countries known to belong to the so-called “sun-belt” of the Earth.
The concentrated radiation is generated by a large number of controlled mirrors(heliostats), each of which redirects the solar radiation onto the receiver as a commontarget on the top of a tower. Here, at the focal point the so-called “solar air receiver”is located, which absorbs the radiation and converts it into high temperature heat.Cellular high temperature resistant materials are used as receivers. As a heat transfermedium air is used, which is heated up by flowing through the open cells of the hotreceiver material and which then feeds a conventional boiler of a steam turbine.
As an example, a 3MW solar tower test plant in Almería, Spain, as well as a sketchof the working principle are shown in Fig.1. A typical flow chart is shown inFig. 2. This idea of the “solar air receiver” was first presented in 1985 [1]. Since then,
272T. F
END
a
b
Fig. 1. Solar tower technology: photograph of the CESA 1 test plant in Almería, Spain (a ) and workingprinciple (b ).
Fig. 2. Flow chart of a steam turbine driven by solar tower technology.
High porosity materials as volumetric receivers for solar energetics 273the technology has been successfully proven in a number of projects during the last25years [2–4]. A ceramic receiver with a thermal power of 3MW was successfullytested by a European consortium in 2002 and 2003 within the SOLAIR-project [5].Recently, a 1.5MW E 1 test plant was erected in Jülich, Germany, which is the firstplant connected to the grid equipped with a solar air receiver [6]. A detailed descriptionof the solar air technology is provided in [7].
2. The solar air receiver
The solar air receiver is often also called volumetric air receiver, because due tothe porosity of the material the concentrated solar radiation is absorbed in part ofthe volume of the material. Its principle is illustrated in Fig.3. A simple tubularabsorber is shown for comparison. Because cold ambient air enters the material atthe front of the volumetric absorber, where it is facing the radiation, the material canbe kept relatively cool. In an ideal operation, the temperature distribution should beas shown on the lower right-hand side of Fig.3. The low temperature level at the frontminimizes thermal radiation losses.
Fig. 3. The volumetric receiver principle
compared to a tube receiver.
Reaching the inner absorber volume the temperature increases and the temperaturedifference between fluid and solid vanishes. Usually, this is already the case aftera couple of cell diameters, for example, in the case of an 80ppi 2 ceramic foam after1–2millimetres. In contrast to this increasing temperature distribution from the inletto the outlet of the absorber module in the case of an ideal volumetric absorberthe temperature distribution of a simple tubular absorber is disadvantageous. This isshown in the graph on the lower left-hand side of Fig.3.
1
2
Megawatt electrical power.The unit ppi (pores per inch) is a measure of the pore density of a foam.
274T. FEND
Here, the fluid which has to be heated flows inside a tube. The solar radiation heatsthe tube which in turn heats the fluid. The temperature at the outer tube surface issignificantly higher, leading to higher radiation losses. The temperature at the outertube surface is limited by the temperature resistance of the material employed. Toavoid destruction of the tube material, the intensity of the concentrated radiation mustbe kept low compared to volumetric absorbers. This makes it necessary to install largerabsorber apertures to achieve similar amounts of total power.
The material requirements of volumetric absorbers are resistance to temperaturesof 1000°C and more and a high porosity needed to allow the concentrated solarradiation to penetrate into the volume of the cellular material. Further requirementsare a high cell density to achieve large surface areas necessary to transfer heat fromthe material to the gaseous fluid flowing through the channels and a high thermalconductivity. Even though the extinction volume, that is, the volume of the receiver,in which the solar radiation is absorbed, decreases with smaller cell size, the increasedsurface area and the increase of heat transfer by smaller hydraulic diameters leads tothe desire for structures with cells as small as possible.
3. Results of solar air receiver experiments
Within several recent projects the performance of solar air receivers has been testedexperimentally. The most interesting quantity of solar air receivers is their solar-to--thermal efficiency
·Q air η=-----------------POA
It may be calculated by dividing the useful thermal power inside the air circuit after·the receiver Q air by the power of the concentrated solar radiation penetrating into·the aperture area of the absorber POA (power-on-aperture). Q air is usually determinedwith the temperature difference, the air mass flow and the heat capacity:
··C (T –T )Q air =m PL out 0
The experiments were carried out in a 20kW solar installation capable to generateconcentrated radiation of up to 5MW/m2 peak flux. Figure4 shows the principle ofthe set-up used for efficiency measurements. Figure5 shows examples of materialstested: a fiber mesh material, which is commercially available from SCHOTT underthe name Ceramat (fiber ?=25μm), the HITREC-material, a siliconized siliconcarbide (SiSiC) catalyst carrier with parallel channels of approximately 2mm in widthmade by Saint-Gobain, a 20ppi SiC foam and an 80ppi/20ppi SiC sandwich-likefoam with the 80ppi layer at the front being responsible for absorption and heattransfer, both made by the Fraunhofer Institute for Ceramic Technologies (IKTS).
High porosity materials as volumetric receivers for solar energetics 275Fig. 4. Set-up used for efficiency measurements.
Advanced
fiber maFoam 80/20 ppi
Hitrec Foam 20 ppi
Fig. 5. Examples of porous materials tested as solar air receivers.
The results are shown in Figs.6 and 7. The best performance was achieved bythe fiber mesh absorber and by the 80ppi foam. This indicates that at a given level offlux density the efficiency increases with increasing cell density. However, the HITREC--material was the material of choice for the modular receiver in the SOLAIR-project(Fig.8) to be tested in a 3MW th 3 scale although it has shown limited efficiency results(Fig.6) compared to the fiber mesh or the 80ppi foam. The reason for that was a higherreliability as far as corrosion resistance and durability are concerned.
Some other materials did not withstand the high temperature exposure duringthe tests. This happened although the mean air outlet temperature was significantlylower than the allowed temperature for the material. As an example, a cordierite3
Megawatt thermal power.
276T. F
END Fig. 6. Results of efficiency test of a receiver made out of silicon carbide (SiC) catalyst carrier material(HITREC) and a combined receiver additionally covered with an SiC fiber mesh material.
Fig. 7. Results of efficiency test of an SiC 20ppi foam receiver and a combined receiver additionallycovered with an 80ppi SiC foam.
Fig. 8. Solar air receiver test within the European project SOLAIR. Each of the 150mm HITREC modulesabsorbs 15–20kW of solar power (left); photographs show a cordierite material before (middle) and afterbeing tested as a solar air receiver in concentrated radiation (I 0≈2MW/m2).
High porosity materials as volumetric receivers for solar energetics 277receiver melted, when the air outlet temperature was 900°C, although the meltingtemperature of cordierite is 1450°C (Fig.8, right).
This effect is mainly due to flow instabilities, which have to do with the temperaturedependent viscosity of air, which increases with increasing temperature. If there aretemperature inhomogeneities at the front side of the receiver hot parts of the receiverhave a lower permeability due to the more viscous air in these channels. Consequently,this kind of self-reinforcing effect may lead to hot spots and a material failure insevere cases. The occurrence of flow instabilities has been investigated in moredetail in a recent study [8]. It turned out that a number of measures are efficient toprevent the occurrence of hot spots. These are a good thermal conductivity inthe direction perpendicular to the main direction of flow, a high inertial coefficientin the Darcy–Forchheimer equation describing the pressure loss inside the porousmaterial and the capability of the materials to allow fluid flow perpendicular tothe main direction of flow (mixing). This last property is especially fulfilled forceramic foams.
4. Numerical prediction of gas flow and temperature distributions
A sophisticated way to describe the problem in Fig.9 is a numerical approach, whichhas been carried out by a research group at the University of Erlangen withinthe common project SOLPOR [14]. This approach provides a numerical solution ofthe basic conservation equations of mass, momentum and energy in a number ofdistinct control volumes. The heat transport in the porous material, which is composedout of heat conduction in the solid, grid, heat conduction in the fluid and heatconduction by mixing effects, is described by an effective heat conductivity, whichhas to be determined experimentally. The experimental method as well as data ofvarious porous materials have been published by DECKER et al. [10]. The numericalmethod is described in more detail in an earlier publication by BECKER et al. [8]. Asthe method is a two phase calculation, solid-to-fluid heat transfer has to be treatedas a separate physical quantity. A transient technique has been employed todetermine this quantity for porous materials. It is described in more detail in [11].
An overview on experimental data of a number of various porous materials is givenFig. 9. Flow problem through a heated porous medium with P out
278T. FEND Fig. 10. Volumetric heat transfer data determined for a set of ceramic foam materials. (Various porediameters were investigated.)
in [12]. As an example, heat transfer data of a series of silicon carbide foams is shownin Fig.10.
Performing a detailed numerical study as roughly described in the last paragraphenables us not only to show a rough tendency how certain properties influencethe probability of hot spots but also to generate two dimensional distributions ofthe front temperature of the porous sample. Such an investigation has been carried outwithin the German SOLPOR-project by researchers from the University of Erlangen.It is described in more detail in [8]. They considered the situation shown in Fig.9and assumed a cylindrical geometry. The external radiant heat source of 1MW/m2, a typical value for a solar tower installation, was assumed to be absorbed in somethin layers of the porous body corresponding to the extinction coefficient ofthe material employed. It was further assumed that the heat flux is homogeneouslydistributed on the circular front of the sample. The resulting flow and temperaturedistribution were calculated. To study possible flow instabilities a “static hot spot”was created by using a small area of higher flux as starting conditions. After a whilethe flux was switched to homogenous flux but the temperature calculation continued.Depending on the material properties, the hot spot maintained or it vanished. In thisway, a parameter study was performed and it could be observed at which levels ofthermal conductivity and inertial coefficient flow instabilities occurred. An exampleis shown in Fig.11. On the horizontal axis the inertial coefficient was varied, onthe vertical axis, the thermal conductivity. For K 2<1×10–4 no="" hot="" spots="" could="" beobserved.="" also="" for="" materials="" with="" a="" flow,="" which="" is="" completely="" dominated="" by="" viscousflow="" (k="" 2="∞)" the="" probability="" for="" hot="" spots="" vanishes,="" if="" the="" effective="" thermalconductivity="" is="" high="" enough="" (="">10Wm –1K –1). By varying three parameters and lookingfor permanent hot spots, a detailed parameter field could be determined, in which nohot spots can occur.
The results confirm the experimental results, which were obtained from a test withthe cordierite catalyst carrier material already mentioned in Section
3. Here the sample
High porosity materials as volumetric receivers for solar energetics 279Fig. 11. Temperature distributions at the front side of various homogenously heated porous materialsamples obtained from numerical calculations.
melted although the average air outlet temperature was 800°C and the melting pointof cordierite is 1450°C. The thermal conductivity (λ≈1Wm –1K –1) and the inertialcoefficient (K 2=0.05m) of the cordierite sample were in a range where hot spots areallowed.
5. The Solar Tower Jülich
In Section2, the technology of the solar air receiver was described in detail.The most recent application of the HITREC Technology (Fig.8) is the Solar TowerJülich, a power plant of 1.5MW electrical power erected in Jülich in West Germany.It was launched in June 2009 and since then it has been delivering electrical powerinto the German electricity grid. It was erected by the company Kraftanlagen Münchenwith financial and scientific support of DLR. It is currently operated by Stadtwerke
Jülich, the local utility.
280T. FEND
a b
c
Fig. 12. The Solar Tower Jülich in operation (a ), HITREC receiver element (b ), view from the testplatform of the tower (c ).
It works according to the principle shown in Fig.2. The total number of heliostatsneeded is more than 2000 and they comprise a mirror surface area of more than20000m 2. The receiver consists of 1080 HITREC receiver elements and covers a totalarea of 20m 2.
6. Spin of applications
6.1. Cross-flow particle filter
Particle filters for Diesel engines (DPF), which are going to be obligatory in the futurefor passenger cars and large vehicles, are object of an intensive research activity allover the world. Most of the DPFs consist of inlet channels, a porous ceramic or metalwall, which enables flow of the exhaust gas through it and outlet channels. Particlesare filtered and remain outside the walls in the inlet channels. In regular time intervalsthe DPF has to be regenerated to remove the particles. In this process, which is carriedout during regular use of the engine, soot particles in the inlet channels of the filter areburned, partly with catalyst support. After burning, ashes remain in the channels. Inmany existing filters this leads to a slow blocking of the inlet channels (Fig.13, left).Fig. 13. Cross-flow particle filter principle.
High porosity materials as volumetric receivers for solar energetics 281During the regeneration heat is generated inside the channels. In so far, the physicalprocesses are comparable to the processes inside the solar air receiver. In the commonproject INNOTRAP, which is carried out by the company DEUTZ AG, the Universityof Erlangen, the Fraunhofer IKTS, the Solar Institute Jülich, the DLR and somesmaller industrial partners, these processes are investigated in more detail.Additionally, a cross-flow filter is proposed, which enables the ashes being removedfrom the inlet channels and entering into an ash container. This principle is shownin Fig.12.
The cross-flow filter may be realized with ceramic foil technology, which has beenapproved for water filtering before, or with an advanced ceramic printing technology,which has been developed by the German company Bauer Technologies. Also thistechnology has been approved in a hot gas application as a solar receiver before [13].An example of a possible filter design is shown in Fig.14 (right).
Fig. 14.
State-of-the-art particle filter principle (left) and advanced cross-flow principle.
Besides testing new filter designs experimentally the objective of the project is todevelop tools for a numerical simulation of the air and particle flow inside the filter.
6.2. Gas turbine cooling
To achieve higher temperatures in the combustion chamber of combined cycle powerstations, the Collaborative German Research Project SFB 561 has been founded in1998. One of the main objectives of the project is to investigate an active cooling ofthe combustion chamber walls by effusion of air into the chamber (effusion cooling).The principle is shown in Fig.15. The wall is covered with metal foam and a thermal
barrier coating (TBC). Cooling air is pressed through the foam and through thinFig. 15. Combustion chamber cooling with μm-scale porous metal foams.
282T. FEND holes in the TBC. In 2004, DLR joined the project and took over the responsibility forthe characterization of the flow through the foam. Until now, a number of foammaterials have been characterized concerning heat transfer and thermal conductionproperties. Results are presented in more detail in [15] and [16]. Also this applicationdeals with an external heat source, which is transferred into the porous material byconvection and by radiation.
6.3. Cross-flow/counter flow heat exchanger
A new approach manufacturing a compact high temperature heat exchanger is shownin Fig.16. A modified honeycomb structure was used to lead two separate gas flowsthrough the open pores of the material. Every second row of channels was closed atthe inlet and outlet with a high temperature cement. These closed rows were thenopened from the side in the green state of the ceramics, as can be seen on the rightphotograph of Fig.16. By using an appropriate canning a second flow could be ledthrough the lateral openings. First experimental results as well as results of numerical
calculations show excellent performance of prototypes of this technology.
Cold gas I out
Cold gas II in
Hot gas II out
Hot gas I in
Fig. 16. Extruded SiC honeycomb-structure used as a cross-flow/counterflow heat exchanger.
High porosity materials as volumetric receivers for solar energetics 283
7. Conclusions
Flow through hot porous materials has been investigated for a number of differentapplications. In the case of the solar air receiver physical phenomena likethe occurrence of hot spots, which have been observed experimentally, could beexplained theoretically and it could be shown how material properties such as thermalconductivity and permeability influence this phenomenon. From the design point ofview the desired properties of an ideal solar air receiver are known, however, futureactivities have to focus on durability, corrosion resistance and simplicity ofmanufacturing to achieve low costs for the whole receiver system, which at last lowersthe generation costs of solar electricity. In the case of the particle filter, the ceramicmixer and the effusion cooling of the gas turbine numerical approaches are subject ofcurrent research activities and first results should be expected within the next months.Acknowledgments – The support of the Deutsche Forschungsgemeinschaft (DFG) for the projectsPORENK?RPER and SFB 561, the German Ministry of Education and Science for the projects SOLPORand 3DKeSt as well as the German Ministry of Economy for the project INNOTRAP is gratefullyacknowledged. Additionally we thank the European Commission for having funded the collaborativeproject SOLAIR.
References
[1]F RICKER H., Studie über die M?glichkeiten eines Alpenkraftwerkes, Bulletin SEV/VSE 76, 1985,
pp. 10–16 (in German).
[2]W INTER C.J., SIZMANN R.L., VANT -H ULL L.L. [Eds.], Solar Power Plants, Springer-Verlag, Berlin,
1991.
[3]M EINECKE W., BOHN M., BECKER M., GUPTA B. [Eds.], Solar Energy Concentrating Systems,
C.F. Miller Verlag, Heidelberg, 1994, pp. 18–19, 68.
[4]C HAVEZ J.M., KOLB G.J., MEINECKE W., Second Generation Central Receiver Technologies –
A Status Report, [Eds.] Becker M., Klimas P.C., Verlag C.F. Müller, Karlsruhe, Germany.
[5]H OFFSCHMIDT B., DIBOWSKI G., BEUTER M., FERNANDEZ V., TéLLEZ F., STOBBE P., Test results of
a 3MW solar open volumetric receiver, Proceedings of the ISES Solar World Congress 2003“Solar Energy for a Sustainable Future”, June 14–19, 2003, G?teborg, Sweden.
[6]K OLL G., SCHWARZB?ZL P., HENNECKE K., HARTZ TH ., SCHMITZ M., HOFFSCHMIDT B., The Solar Tower
Jülich, a Research and Demonstration Plant for Central Receiver Systems, Proceedings of the 2009SolarPaces Conference, Berlin, September 15–19, 2009.
[7]F END T.D., PITZ -P AAL R., HOFFSCHMIDT B., REUTTER O., Solar radiation conversion, [In] Cellular
Ceramics: Structure, Manufacturing, Properties and Applications, [Eds.] Scheffler M.,Colombo P., Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, 2005.
[8]B ECKER M., FEND T., HOFFSCHMIDT B., PITZ -P AAL R., REUTTER O., STAMATOV V., STEVEN M.,
T RIMIS D., Theoretical and numerical investigation of flow stability in porous materials applied asvolumetric solar receivers, Solar Energy 80(10), 2006, pp. 1241–1248.
[9]K RIBUS A., RIES H., SPIRKL W., Inherent limitations of volumetric solar receivers, Journal of Solar
Energy Engineering 118(3), 1996, pp. 151–155.
[10]D ECKER S., M??BAUER S., NEMODA S., TRIMIS D. ZAPF T., Detailed experimental characterization
and numerical modelling of heat and mass transport properties of highly porous media for solarreceivers and porous burners, Sixth International Conference on Technologies and Combustion fora Clean Environment (Clean Air VI), Vol. 2, Porto, Portugal, 9–12 July 2001, paper 22.2.
284T. FEND
[11]F END T., REUTTER O., PITZ -P AAL R., Convective heat transfer investigations in porous materials,
International Conference Porous Ceramic Materials, Brügge, October 20–21, 2005.
[12]F END T., HOFFSCHMIDT B., PITZ -P AAL R., REUTTER O., RIETBROCK P., Porous materials as open
volumetric solar receivers: Experimental determination of thermophysical and heat transferproperties , Energy 29(5–6), 2004, pp. 823–833.
[13]F END T., REUTTER O., PITZ -P AAL R., HOFFSCHMIDT B., BAUER J., Two novel high-porosity
materials as volumetric receivers for concentrated solar radiation, Solar Energy Materials andSolar Cells 84(1–4), 2004, pp. 291–304.
[14]R EUTTER O., BUCK R., FEND T., et al., SOLPOR Charakterisierung von Str?mungsinstabilit?ten in
volumetrischen Solarreceivern, Statusseminar Vernetzungsfond “Erneuerbare Energien”, Stuttgart,February 17–18, 2004, Projekttr?ger Jülich, 2004.
[15]S AUERHERING J., REUTTER O., FEND T., ANGEL S., PITZ -P AAL R., Temperature dependency of
the effective thermal conductivity of nickel based metal foams, Proceedings of ASMEICNMM2006, 4th International Conference on Nanochannels, Microchannels and Minichannels,June 19–21, 2006, Limerick, Ireland, paper no. ICNMM2006-96136.
[16]R EUTTER O., SAUERHERING J., SMIRNOVA E., FEND T., ANGEL S., PITZ -P AAL R., Experimental
investigation of heat transfer and pressure drop in porous metal foams, Proceedings of ASMEICNMM2006, 4th International Conference on Nanochannels, Microchannels and Minichannels,June 19–21, 2006, Limerick, Ireland, paper no. ICNMM2006-96135.
Received November 12, 2009
in revised form January 13, 2010
范文四:太阳能吸热涂料
太阳能吸热涂料,荣力牌RLHY-2337太阳能吸热涂料。大家都知道我们未来面临的能源问题已经越来越严峻了,如果人类还想要好好的继续生存下去,我们就必须在那些少得可怜的能源被我们彻底耗尽前,赶紧想想办法了。近几年来,在新能源开发领域我们的科学家们也确实有了不少的研究成果,比如数据炉,发电鞋和人造树叶发电等等,不过成果归成果,很多东西的商业可行性还是不高,要让这些东西真的走进我们的日常生活还需要一段时间。 太阳能吸热涂料,荣力牌RLHY-2337太阳能吸热涂料。吸收辐射比是指物质吸收太阳能的吸收系数α与其热发射系数ε之比,α/ε比值越小,降温程度越大,研究反射太阳能涂料就是要通过对颜料和成膜物的选择来调节α/ε值。
太阳能吸热涂料,荣力牌RLHY-2337太阳能吸热涂料。吸收太阳能涂料。据专家介绍, 涂料的第一层是由氧化硅制成的防阳光反射层,对照射在涂料上的阳光只吸收不反射,防止热量的损失。第二层是吸收阳光热量的金属陶瓷层。第三层是导热性良好的金属层。这三层总厚度只有100纳米,经过实验,这种新型涂料可以将接收阳光的98%转变成热能,并使热能转变为电能的总效率达到20%以上。
太阳能吸热涂料,荣力牌RLHY-2337太阳能吸热涂料用于太阳能集热器、太阳能集热板等,太阳能吸热涂料具有良好的耐温特性,涂料直接涂刷在吸热体表面,帮助基材吸收太阳热量,涂层同时具有很好的、防腐性、防水性、抗酸碱、施工方便的特点。
太阳能吸热涂料,荣力牌RLHY-2337太阳能吸热涂料应用领域:
太阳能吸热涂料,荣力牌RLHY-2337太阳能吸热涂料具有高太阳热率,使用方便,可薄层涂装,也可厚层涂刷,涂料同时具有优良的保护和装饰功能。主要涂刷于太阳能热水器吸热管、太阳能集热器等要求高吸收太阳热的工业设备上。
涂刷方法:刷涂、灌涂、滚涂、喷涂
涂料可以涂刷在钢、铸铁、锌、铝、铜、不锈钢、石头、木材、水泥、聚氨酯、聚丙烯涂层等表面。为了保证涂料有附着效果,必要时应对物体表面进行适当的预处理。
太阳能吸热涂料,荣力牌RLHY-2337太阳能吸热涂料施工:
1、将吸热体表面的锈渍、油污、粉尘清洗干净,待干燥后施工(不锈钢、铜等光滑表面涂刷涂料前,需要将基体表面打磨粗糙) 。
2、涂层厚度应在0.2 mm-0.3mm 之间;吸热涂料共施工2到3遍,第一层的施工厚度应小于0.2mm 以后每层的厚度应大于0.2mm ,涂层施工时,必须等前一层完全干燥后方可进行后续施工,逐层施工直至需要的厚度,对于喷涂时,喷枪喷出的涂料不能产生雾化现象。
3、对于低温和高温物体必须等到涂层完全干燥后才能启动系统工作。
范文五:RLHY-2337太阳能吸热涂料
RLHY-2337 太阳能吸热涂料
RLHY-2337太阳能吸热涂料是北京荣力恒业科技有限公司研发生产,经过国内部队涂料专家和科学院院士长时间的评审,一致认为涂料对提高太阳能吸收有很好的效果。
通过在低辐射材质铝,铜,不锈钢上涂上吸热涂层,根据所涂涂层厚度,辐射系数可达28%-49%,对太阳能的吸收率可达到88 %- 94%,吸热效应优异。该涂料对底材具有优良的附着性,涂膜的耐冲击性、耐弯曲性、耐湿性、耐热性(可达500?)、耐蒸汽性、耐老化性均优良,受热无气体挥发,抗紫外线退化。该涂料用于太阳能集热器、太阳能集热板等,采用雾化喷射器,每公斤涂料可喷涂4平方涂膜,成本比黑铬涂层低50%-75%。
太阳能吸热涂料,耐温幅度-50--500?,涂料直接涂刷在吸热体表面,帮助基材吸收太阳热量,涂层同时具有很好的、防腐性、防水性、抗酸碱、施工方便的特点。
涂料参数:
涂膜颜色 黑色 硬度 5H
防腐蚀 好 抗拉强度 2500kpa 附着力 1级 防腐蚀 好 湿热试验 2000小时 附着力 1级 耐水性(h) 72h不起泡 湿热试验 湿热试验
不生锈
适用温度 -50~500? 老化试验 2000 h
太阳能吸收率 88 %- 94% 耐酸碱 72h不起泡 不生锈
应用领域:
太阳能吸热涂料,具有高太阳热率,使用方便,可薄层涂装,也可厚层涂
刷,涂料同时具有优良的保护和装饰功能。主要涂刷于:太阳能热水器吸热管、太阳能集热器等要求高吸收太阳热的工业设备上。
涂刷方法:刷涂、灌涂、滚涂、喷涂
辐太阳热屏蔽涂料可涂刷物体:
可涂层具有优良的附着性,施工简便,几乎可以在任何清洁、干燥的表面
上使用。
涂料可以涂刷在钢、铸铁、锌、铝、铜、不锈钢、镁、石头、木材、水
泥、砖瓦、陶瓷、玻璃、纺织物、塑料、纸、有机玻璃、石棉、各类纤维
板、胶木板、沥青、泡沫(海绵)、聚氨酯、聚丙烯涂层等表面。
为了保证涂料有附着效果,必要时应对物体表面进行适当的预处理。
涂料施工:
1、将吸热体表面的锈渍、油污、粉尘清洗干净,待干燥后施工(不锈钢、铜等光滑表面涂刷涂料前,需要将基体表面打磨粗糙)。
2、涂层厚度应在0.2 mm -0.3mm之间;吸热涂料共施工2到3遍,第一
层的施工厚度应小于0.2mm以后每层的厚度应大于0.2mm,涂层施工
时,必须等前一层完全干燥后方可进行后续施工,逐层施工直至需要的厚
度,对于喷涂时,喷枪喷出的涂料不能产生雾化现象.
3、对于低温和高温物体必须等到涂层完全干燥后才能启动系统工作。
转载请注明出处范文大全网 » 太阳能吸热材料的研究.
1×10–4>