范文一:高氯酸羟胺热分解动力学
第51卷 第1期化 工 学 报Vol151 №1
2000年2月Journal of Chemical Industry and Engineering(China)February 2000
研究简报
高氯酸羟胺热分解动力学
米镇涛 常志华 张香文 邱立勤 王亚权
(天津大学化工学院,天津300072)
关键词 高氯酸羟胺 分解动力学 热分析中图分类号 O643112
引 言
高氯酸羟胺(HAP)是一种用于推进技术领域的新型高能氧化剂,在高性能推进系统中具有极为重要的价值[1~3].
用热分析技术研究含能物质的热分解,已有大量报道[4,5].而对于HAP的热分解的报道较少[6~8],采用热分析技术研究HAP的分解动力学目前还没有文献报道.本文用热解重量分析法(TG)和差示热分析(DTA)对HAP的热分解进行了研究.根据HAP合成及贮运中可能引入的杂质,研究了NH4+、H+、Fe3+对HAP热分解行为的影响.
2 实验结果
211 热失重分析
4个体系的热重曲线如图1所示.由于HAP
吸湿,其热重曲线在100℃以下部分主要与其脱水有关.图2为纯HAP热分解的TG-DTG曲线图
.
1 实验部分
111 高氯酸羟胺固体样品的制备
Fig11 TGcurvesofHAPsamples
1—HAP+Fe3+;2—HAP;3—HAP+NH4+;4—HAP+H
+
将HAP水溶液及含有添加物的HAP水溶液减
),浓缩后结晶,制得如下HAP压下蒸发(<>
固体样品:纯HAP固体结晶;含高氯酸铵w=
410%的HAP固体;含高氯酸w=310%的HAP固体;含三氯化铁(Cl-对HAP热安定性无影响)[9]w=0129%的HAP固体.112 热分析实验
TG和DTA分别在日本岛津公司制造的TGA250型热重分析仪和DTA250型差热分析仪上进行.
由于HAP吸湿,通过试验确定在100℃停留30min作为脱水条件,在此条件下HAP不发生分解.TG实验是在20ml?min-1的氮氛下以10℃?min-1
升温至100℃,停留30min,再以8℃?min-1升温至300℃结束.DTA实验的氮气流速为50ml?min-1,其他条件同热重分析.
1998209224收到初稿,1998212221收到修改稿.
联系人及第一作者:米镇涛,男,58岁,教授.
Fig12 TG2DTGcurvesofneatHAP
22222DTG;———TG
从图1可以看出,与纯HAP的分解相比,含
高氯酸铵的HAP以及含高氯酸的HAP的分解被延迟,而含氯化铁的HAP的分解则提前了.表1给
化 工 学 报 2000年2月?134?
出了4种样品的分解温度,从表中数据可以看到,氯化铁对HAP分解的促进作用很明显,它使HAP的分解峰温提前了大约65K,分解温度区间ΔT也比其余样品小10K左右,而且其失重曲线很陡,说明分解速度非常快.铵和酸则对HAP的分解起了延迟作用,其分解温度区间ΔT与纯HAP的相近.含铵HAP的分解峰温与纯HAP的相比延后20K左右,含酸HAP上述特征值延后30K左右.这可能是由于铵和酸的存在稀释了HAP的浓度,从而降低了HAP的起始分解速度,而使得分解峰温后移.由于纯HAP的分解是HAP先解离成羟胺和高氯酸,再进一步发生羟胺和高氯酸的氧化分解,高氯酸的存在使第1步解离反应变得困难,降低了HAP起始分解速度,因此含高氯酸HAP的分解峰温比含铵HAP的相应值又延后10K左右.此外,从平均失重速率数据中也可得出上述结论.含铁HAP的失重速率比纯HAP快30%,说明铁对HAP的分解起加速作用;含铵HAP的失重速率与纯HAP相近,说明铵只是延迟了HAP的分解,当分解发生后,铵基本上对分解无影响;含酸HAP的失重速率比纯HAP略低,表明酸对HAP的分解有微弱的阻滞作用.
Table1 TGdataofsamples
SampleHAPHAP+NH4+HAP+H+3+
使得总放热量降低较多.含铵HAP和含酸HAP由于含有杂质,因此它们的焓差绝对值要低于纯HAP的焓差绝对值.由于在该条件下高氯酸铵还
没有发生分解,故含铵HAP的焓差绝对值比含酸HAP的焓差绝对值低.
3 HAP热分解反应动力学
311 模型方程的建立
在热重分析中,物质的热分解速率用下式表示
)=k(T)f(α
dt
(1)
α为分解分数,即失重率,其定义式为式中
α=(m0-m)/(m0-mf)
(2)
式中 m0为样品的起始质量,m为样品在T℃时的质量,mf为样品的最终质量.式(1)中,k(T)为T℃时的速率常数,根据Arrhenius方程有
k(T)=Ae
-E/RT
(3)
)参照质量作用定律,采用式(1)中的函数f(α
幂函数形式,在此可写成f(α)=(1-α)n,
得到
=Ae-dt-=
βedT
E/RT
(1-α)
n
(4)
在恒定的程序升温速率下β=dT/dt,则
E/RT
(1-α)
n
(5)
m0
121951111215147
Td/KTp/K
Δα?(Δt)
-1
01150011490114401195
-1
从上式可求出高氯酸羟胺分解动力学方程式
lnβ
)=lnA-+nln(1-α
dRT
(6)
448109~501112490197468111~521131510142390148~431117425148
51244477158~532137519191
采用多元线性回归法拟合式(6),便可求出动力学
参数.
实验中取得的失重速率数据是以dm/dt表示的,需要转换为dα/dt.式(2)两边同时对t微分,得到
=-dtm0-mf
(7)
212 差热分析
对HAP样品的差热分析结果与热重分析的结果对应性较好,其规律与热重分析类似.样品的差
热分析数据见表2.在表2的样品热效应数据中,含铁HAP的焓差绝对值最低,这可能是由于它的分解温度较低,分解的初级产物没有进一步分解,
Table2 DTAdataofsamples
SampleHAPHAP+NH4HAP+H+HAP+Fe
3++
312 动力学参数的求解
表3~表6分别列出了纯HAP,HAP-NH4ClO4,HAP-HClO4和HAP-FeCl3体系的热
分解失重数据.
用多元线性回归法,利用方程(6),求得了相
ΔH/kJ?g-1
-699191-607159-623151-477181
m0/mgTp/K
应4个体系的动力学方程模型参数,归纳于表7.其回归的偏差平方和Q<>
01108,相关系数r>0198(含Fe物系偏差稍大).比较4个体系的动力学参数发现,其活化能E和反应级数n的顺序为
816081301214018130
498113520103532190432190
第51卷第1期 米镇涛等:高氯酸羟受热分解动力学 ?135?
Table3 DataforneatHAPthermaldecompositionbyTGandDTG
No.123456
T/K
α
0108510011164011489011846012301012808
(dt)dα?
-1
469142472156475106477141479190482108
-1
01072940109492011177011431011739012098
No.7891011
T/Kα
013306013858014450015097015833
(dt)dα?
-1
483179485153486195488124489165
-1012528013170013858014535015080
No.1213141516
T/Kα
016459016928017598017933018913
α(dt)d?
-1
490153491132492155493151494130
-1015319015347015179014983013938
Table4 DataforthermaldecompositionofHAPwithNH4ClO4byTGandDTG
No112345
T/K
α
0108627011158011499011928012333
(dt)dα?
-1
488158491116493156496103498109
-1
0108176011027011256011534011805
No1678910
T/Kα
012875013473014171014915015495
(dt)dα?
-1
500135502139504146506122507138
-1012179012641013172013736014097
No11112131415
T/Kα
016132016754017573018323019378
(dt)dα?
-1
508157509166511126513119515114
-1014365014465014273013723012016
Table5 DataforthermaldecompositionofHAPwithHClO4byTGandDTG
No112345
T/K
α
0109464011315011754012388013102
(dt)dα?
-1
501100503195506156509118511168
-1
0108449011222011636012143012651
No1678910
T/Kα
013609014289014966015452015943
(dt)dα?
-1
513123514193516159517163518175
-1012965013326013605013763013870
No11112131415
T/Kα
016552017151017670018385018998
(dt)dα?
-1
519191521102522111523186525171
-1013922013856013680013185012452
Table6 DataforthermaldecompositionofHAPwithFeCl3byTGandDTG
No1123456
T/K
α
010079940101273010197401030630104535006551
(dt)dα?
-1
39014839416639817240310640714741161
-1
010085600101189010167001023420103474005285
No17891011
T/Kα
0109126011099011232011796012267
(dt)dα?
-1
414190416165417159419110419196
-1011121012209013065015002015990
No11213141516
T/Kα
012686013151013610014081014504
(dt)dα?
-1
420148421112421169422131422183
-1016664017217017630017966018162
Table7 Parametersofkineticsequations
SampleHAPHAP+NH4+HAP+H+3+
E/kJ?mol-1
了纯HAP及含有添加物的HAP体系的热分解动力
n
A/min-1
213239276171 01378
0171501924-2121
3137×10223104×10246114×102720
学方程.
(2)TG和DTA实验结果表明,3价铁对HAP的分解有促进效果,而铵离子和酸对HAP的分解无促进作用,铵相当于惰性组分,酸则对HAP的分解有轻微阻滞作用.
符 号 说 明
A———指前因子,min-1
E———活化能,J?mol
-1
HAP+FeCl3<><><>
这也反映了4个体系的热安定性顺序.
4 结 论
(1)用TG-DTG研究了HAP热稳定性,得到
ΔH———焓差,kJ?g-1
k———速率常数,min
-1
化 工 学 报 2000年2月?136?
m———物质质量,mg
n———反应级数
R———通用气体常数,J?molT———温度,Kt———时间,minw———质量分数
-1
plosivesandPropellants(火炸药学报),1998,21(2):36—382 MuellerKF,CzieslaMJ.US5223057.1993
?K-1
3 BiddleRA,SuttonES.US4527389.1985
4 TianLinxiang(田林祥).ExplosivesandPropellants(火炸药),
1996,19(4):43—45
5 MishraSC,PantJ,PantGC,DuttaPK,DurgapalUC.Propel2lants,Explosives,Pyrotechnics,1995,20:91—956 GoshgarianBB.AD69249211969
7 CordesHF,SmithSR.J.Inorg.Nucl.Chem.,1970,32(4):1135—1139
8 RubtsovUE,RumiantsevIS,AndrienkoLP.BulletinofAcademic
SinicaofUSSR,SeriesofChemistry,1980,7:1463—1469
9 ChangZhihua(常志华).OptimizationofTechnologicalParametersforSynthesisofHAPandStudiesontheThermalStabilityofHAP:[dissertation](学位论文).Tianjin.TianjinUniversity,1998
α———失量率
β———升温速率,℃?min-1
下角标
d———分解 f———最终 p———峰值 0———起始
References
1 MiZhentao(米镇涛),QiuLiqin(邱立勤).ChineseJournalofEx2
KINETICSOFTHERMALDECOMPOSITIONOF
HYDROXYLAMINEPERCHLORATE
MiZhentao3,ChangZhihua,ZhangXiangwen,QiuLiqinandWangYaquan
(SchoolofChemicalEngineeringandTechnology,TianjinUniversity,Tianjin300072)
Abstract Hydroxylamineperchlorate(HAP)isanewenergeticoxidizer.ThethermaldecompositionofpureHAPandtheeffectsofadditivesonthermaldecompositionofHAPwerestudiedbyusingTGandDTAinnitro2genatmosphere.Theadditivesare410%NH4ClO4,310%HClO4,and0129%FeCl3respectively.TheTGcurvesoftheabovefoursystemsweredetermined.TheexperimentalresultsindcatethatFeCl3hasapromotingeffectonthedecompositionofHAP,butNH4ClO4andHClO4havenosucheffectonthedecompositionofHAP.NH4ClO4actsasaninertsubstance,andHClO4hasaweakretardingeffectonthedecompositionofHAP.Byusingnon2isothermalTG2DTG,thethermaldecompositionkineticequationsofthefoursystemswereobtained.Throughcomparingthekineticparametersofthefoursystems,theorderofdecompositionactivationenergy(E)andreactionorder(n)werefound:
HAP+0129%FeCl3<><><>
Thisalsoindicatestheorderofthermalstabilityofthefoursystems.ThethermaldecompositiondataofDTAshowthatthedecompositionheatofHAPis-699191kJ?g-1andthedecompositionpeaktemperatureofHAPis498113K.WiththedecompositionpeaktemperatureofHAP+FeCl3fallingto432190K,theonesofHAP+NH4ClO4andHAP+HClO4increaseto520103Kand532190Krespectively.Keywords hydroxylamineperchlorate,decompositionkinetics,thermalanalysis
3Towhomcorrespondenceshouldbeaddressed.
范文二:、结构及其对高氯酸铵的热分解影响
第28卷第2期2012年2月
无机化学学报V01.28No.2367.373
CHINESEJOURNALOFINORGANICCHEMISTRY
5.氨基双四唑富氮配位化合物的合成、结构及其对高氯酸铵的热分解影响
谢
钢
夏正强
陈三平★
高胜利★
(合成与天然功能分子教育部重点实验室,西北大学化学与材料科学学院,西安710069)
摘要:水热条件下合成了两个5.氨基双四唑配位化合物Cu(bta)(bpy)(H:0)(1)fNPb“btah(en)z-4H20(2)(H2bta=5-氨基双四唑,bpy=
2,2’.联吡啶。ell=乙二胺),并借助单晶X.射线衍射技术对其结构进行了表征。在配合物1中,5.氨基双四唑配体以双齿螯合模式
与铜离子配位形成离散的分子,并通过H键作用进一步形成了i维的超分子结构。在配合物2中,强的R文8)氢键环作用将双核的Pb2(10tah(en):单元连接成一维的链,这些链通过与水分子氢键作用被进一步组装成j维的超分子结构。另外,通过DSC技术探
究了它们作为添加剂对高氯酸铵的热分解催化影响。研究发现。铅基化合物2的催化效果较铜基化合物1要好。
关键词:5.氨基双四唑;配位化合物;高氯酸铵;晶体结构中图分类号:0614.43*3;0614.121
文献标识码:A
文章编号:10014861(2012)02.0367.07
Nitrogen-RichCoordinationCompoundswith^Uv-Bis(1H-tetrazole-5-y1)-amine:Synthesis,StructureandEffect
on
theThermalDepositionofAmmoniumPerchlorate
XIEGang
XIA
Zheng—Qiang
CHENSan—Ping+GAOSheng—Li+
(Key
LaboratoryCollege
ofSyntheticandNaturalFunctionalMo&culeChemistryofMinistryof
Education,
ofChemistryandMaterialsScience,No疗hwestUniversity,Xi’(in710069,China)
Abstract:TwocoordinationpoundswithⅣ'Ⅳ-bis(1H—tetrazole一5一y1)一amine(H2bta),Cu(bta)(bpy)(Hz0)(1)and
and
Pb2(bta)2(en)2?4H20(2)(bpy=2,2'-bipyridyl
thebidentatechelatemodebonds
to
en=ethylenediamine),havebeenhydrothermallysynthesizedand
structurallycharacterizedbysinglecrystalX—raydiffraction.In1,theH2btaligandscoordinatewithCu2+ionsin
to
formdiscretemolecularstructures,which
a
ale
assembledthroughextendedhydrogen
generate
a
3Darchitecture.2presents3Dsupramolecule
stucture
constructedfrom1Dchains,in
whichthebinuclear
Pb2(bta)2(en)2
unitsarebridgedbythestronghydrogenbondring
as
motif尺22(8).Furthermore,
poundsland2wereexplored
additives
to
promotethethermaldepositionofammoniumperehlorate
culTes
(AP)by
thedifferentialscanningcalorimetrytechniques(DSC).DSC
revealthatlead—basedpound2
showsbetterperformancethanthecopper.basedpound1.CCDC:855627,l;774052,2.
Key
words:N3V??bis(1H?-tetrazole?-5?-y1)??amine;coordinationpounds;ammoniumperehlorate;crystalstructure
Energeticmetalsalts
are
employedasattractive
effect
on
energefics‘”.Ofthoseenergeticmetalsalts,
alternativesinviewthattheyballisticallymodifythebustionpatternofpropellantswithoutmuchnegative
收稿日期:201i-11-01。收修改稿日期:201I-12-05。
rich—nitrogenenergeticbenign
explosives
poundsas
environmentallytheligands
to
areemployedas
国家自然科学基金(No.21073142,21173168,21127004),陕西省自然科学基金(No.09Js089)和陕西省教育厅科技专项基金(No.2010JK882,2们oJQ2007)资助项目。
+通讯联系人。E—mail:gaosMi@nwu.edu.ca,san#ngchen@126.
无机化学学报第28卷
synthesizetheenergeticmetalsalts.Asone
oftheenergetic
materials.tetrazoles
witIl
an
outstanding
propertyofhighnitrogencontent,hiIshpositiveheatofformationandgood
thermalstability,owing
to
their
aromaticringsystemt习,havepromisedtheirplexesinterestingforenergeticmaterials.Furthermore,metal
catior:s
plexes
ale
soughtponentsforpyrote—
chnicalmixtures,bythebinationoftheenergetiitrogenrichligandsandthecolorantmetalcations嘲.Untilnow,manymetal—tetrazolederivativesplexeshave
beensynthesizedandcharacterized
to
be
the
potential
energeticmaterials,ponentsforpyrote—
chnicalmixtures,additivesin
pyrotechnicsand
AP
based
propellants
fortheircharacteristics
of
hiIgh
energyand
thermals汕ility删.Inaddition,the
applica-
tionfieldoftetrazolesaleinvolvedofmagneticO"11I
and
catalyticapplication‘121,aswellasadsorption【1孓t4】,topo-
lodM71
Ⅳ卅bis(1H-tetrazole…5
andenergeticmaterials[18"211.
y1)amine(H2b回has
beenwidely
reported
as
energetic
materials
with
high
nitrogenandhighthermalstability.Asthederivativeof
tetrazole,H2btapossesses
versatilecoordinationmodes
due
to
thenineelectron-donatingnitrogenatoms
are
the
potentialcoordinationsites,whichpromisestheH2bta
to
bean
intriguing
ligandincoordinationchemistry.
Moreover,thenitrogen
atoms
are
predicted
to
be
involvedin
thehydrogen
bondsmotif
to
construct
supramolecules
andcapture
guest
molecules[za._Above
aU.theH2btaplexeswiththemetalionscouldnot
onlygive
an
interestingstructurebutalsoprovidethe
activemetalsor
metaloxides
at
themoleculelevel
on
thepropellantsurfaceto
improvebustionreaction
thepoundsaleusedastheadditivesinthepropellantll∞1.Therefore.bothin
theoreticalprospect
practicalapplication,thesynthesesand
structures
H2btaplexesaleofsignificance.
In
this
paper,we
report
the
syntheses
and
oftwoneergeticcoordinationpounds
on
N烈一bis(1H-tetrazole-5-y1)一amine,Cu(bta)
Pb2(bta),(enh?4H20(2).Because
the
deposition
ofAPdirecdyinfluencesthe
behaviorofsolidpropellantsI蝴.po-
1and2astheadditives
on
thedepositionof
APwere
explored
by
the
differential
scanning
calorimetry(DSC)techniques.
1
Experimental
1.1
Materialsandinstruments
Allreagentswere
purchasedmerciallyand
usedwithoutfurtherpurification.H2bta?H20wassynth?esizedaccording
to
thereference[q.Elemental
analyses
were
carried
out
with
an
ElementalValioELⅢ
analyzer.IRspectra
wererecordedwith
a
Tensor27
spectrometer
(BrukerOptics,Ettlingen,Germany).
Thermogravimetric
measurements
were
performedwith
a
NetzschSTA449Capparatusunder
a
nitrogenatmo—
spherewith
a
heating
rate
of10℃?min4from30to
900
℃.DSCexperiments
were
performed
with
a
thermal
analyzer
ofPerkin—ElmerPyris6DSCwithheating
of5.10.15and20℃?min一1from30to
500℃.
1.2
PreparationPreparationof
Cu(bta)(bpy)(H20)(1):A
mixture
Cu(N03)2?3H20(0.048
8g,0.2
mm01),H2bta?H20
3舀0.2
mm01),2,2’一bipyridyl(0.031
2g,0.2
H20(7mE)was
sealedin
a
10mLTeflon-smiMessautoclaveandheated
at
130℃under
pressurefor3d
and
thencooledat
a
rate
of
oC?min一1
to
roomtemperature;greenblockcrystals
obtained.Yield:0.0225gf28.9%based
on
Cu).
C12HllONllCu(M,=388.87)(%):C
37.03,
2.83,N39.60;found(%):C36.68,H2.76,N
39.04.
5270),3458(s),3394(m),3195(w),
819(m),2364(m),l652(vs),1515(vs),1456(s),1
338
247(m),1145(m),l147(m),1097(w),l051(s),
l
002(s),854(s),810(m),734(s),686(s).
Preparationof
Pb2(bta)2(en)2?4H20(2):A
mixture
Pb(N03)2(0.0662岛0.200mm01),H2bta?H20
7为0.2
mm01),ethylenediamine(30wL)and
mE)was
sealedina
10mLTeflon—linedstainless
and
heated
at
120℃under
autogenous
for3dandthencooledat
a
rate
of5℃?h。1
to
temperature;colorlessblock
crystals
were
inthesolutionofthe
reactors
afterlweek.
gf34.1%based
on
Pb).Anal.calcd.for
10.57,H2.88,N
10.34,H2.67,N
33.68.IR(KBr,
rates
of
(0.034
mm01)andautogenouslined5wereAnal.calcd.for
HIR(KBr,cm_):32
(m),lwhenof
andof(0.034
H20(7autoclavestructures
pressurebased
room
(bpy)(H20)(1)andobtained
thermalYield:0.0620bustionundsC8H如。N扩b2(Mr=908.91)(%):C
33.91;found(%):C
第2期谢钢等:5.氨基双四唑富氮配位化合物的合成、结构及其对高氯酸铵的热分解影响369
cm。1):3357(w),3284(w),3143(w),2914(m),1616(vs),
11
refined
anisotropically.The
at
HatomsattachedC
or
N
525(s),1496(s),1419(s),1398(s),1313(s),6(s),124(s),995(s),781(s),694(s),559(s).
X-raycrystallographyAllsingle—?crystalX?-ray
diffractionexperiments
Smart
Apex
CCD
atomswereplaced
calculatedpositionsintheriding-
with
their
displacement
model
approximation,
setto
1.3
parameters
1.2
times%ofthe
parent
atoms.The
waterHatomswerelocatedindiffereneeFouriermaps.
were
performed
with
a
Bruker
andthenrefinedwithisotropic
thermal
2
parameters1.5
structure
diffractometerequippedwithgraphitemonochromatedMoKot
timesthoseofOatoms.Crystaldataandrefinementsparametersfor1
radiation(A=0.071073nm)using
q,-toscan
and
are
listedinTable
mode.The
single—crystal
structures
ofpoundswere
1.TheselectedbonddistancesTable2andhydrogen
andanglesareshownin
solvedbydirectmethodsandrefinedwithfull—matrixleast?squarestechniquesbased
on
bonding
interactionsfor1and2
F
2
usingSHELXS一
were
are
shown
inTables3.
97andSHELXL.97【舔27】.Allnon.hydrogenatoms
Table1
CCDC:855627,1:774052。2.
Crystaldataandstructureparametersfor1and2
Table2
Selectedbondlengths(inn)andangles(o)for1and2
无机化学学报
第28卷
Continued
1汕le
1
Pb(1)-N(1)Pb(1)-N(9)
02.530248
8(8)
I(7)
eb(1)-N(10)Pb(1)一N(11)
0256l(9)
N(10)一eb(1)一N(9)
852(3)N(10)-Pb(1)-N(11)
70
2(3)N(10)?Pb(1)?N(1)80.5(3)
业:型!坐坐:::型
Table3
型:型型!!!竺旦
型:竺坐!!!
里型
Hydrogenbondinginteractionsin1and2
Symmetrytransformationsused
to
generateequivalent
atoms:l:。吖,—”l,-z+l;。x-I,竹蜀。-x+l,—y+2.呻;“x+l
—y+2,-z;”-x+l,—”l,-z+l;2:1-x+2,—pl,-z+l;。-x+l,—p1,叫;“x+l,Y,;;“-x+l,—p1,-z+l;’扩1,抖:;”z,y-I
subtledifferencesinthebondlengthsandangles.The
2.1
Descriptionofcrystalstruttur%
Sinde.crystalX.raydiffractionstudiesrevealthat1and2bothcrystallizeinthetricliniecrystalsystem,
spacegroupP1.Themolecularstructureof1isshown
Cu-Nbonddistancesvaryfrom0.1960(3)to
0.205
6(4)
in
Fig.1.There
are
two
crystallographicallyunique
Cu(1)ions,two
The
one
bta。ligands,twobpyCO—ligandsandtwo
theasymmetricunit.
COOrdinatedwatermoleculesiU
Cul(Ⅱ)i011iS6ve.coordinatedbyfourNatomsfrom
and
bta2.1igand(N1
one
N2)and
one
bpy
molecule(N3
andN8),and
coordinatedwater
molecule(01).The
Fig.1
ORTEPdrawingofa9ymmetricunitofpoundl
coordinationenvironmentofCu2(II)centeriSexactlysimilarwiththatof
Cul(II)in1.whiletherearesome
with30%probabilitylevel
第2期谢钢等:5.氨基双四唑富氨配位化合物的合成、结构及其对高氯酸铵的热分解影响
themeanof0.1997(8)nm,whiletheCu一0
theverymonunitstotheID
371
nmwith
R≯(8)巴which
are
bridgestheTable
binuelnar
bonddistanceis
sli曲flylonger,0.2234(3)nnl.
are
chain(Fig.4and
3),where
Itisworthnotingthatthetetrazolenitrogenmomsandcoordinatedwatermolecules
involved
inthe
Pb2N4ringplanesparallel.Thefreewater
a
mol训es
the
constructthe1Dchainto
3Dsupramoleeulethrough
extensivestrong,verydirectionalhydrogen
and眺le
coordination
structure.
bonds(Fig.2
Cu(砷
thehydrogenbonds.
31.which
connect
a
the
discrete
unitstogenerate3Dsupramoleeul&r
Symmetrycode:1-x+l,1十1,-z;LatticewatersclarityFig.3
are
omittedfor
CoordinationenvironmentofPb“ionin2with
30%thermalellipsoidsprobabilitylevel
Symmetrycode:‘—“1,—什2,1;“x+l,n=;。《,_+2,q;
”^十l。-z+l;’p1,¨矿Ⅲ1,巾l,-z+I
Fig.2
Intermolecularhydrogenbondinginteractionsinpound1
Symmetry
=一1
code:‘咄+2.-y+l,-z+l;。-x+l,_y+l,呻;。pl,"
AsshowninFig.3,2is
two
a
binucle&rmoleculewith
isiustlikethe
2.2
Fig.4
1Dchainaffordedbyhydsogen
bonds
in2
bta2一andethylenodiamine.whieh
Thermalgravimetrieanalyses
Thermal
reported
Pbz(bta)z(bpy)2(2’)and[Pb2(bta):,(phen)2]?2H20
similarslructuresaRduetothesamemodesofbta2一andtheauxiliaryligands.
out
gravimetrie口G)analysesand
800
werecarried
凹1闭.111e
coordination
between30
oC(Fig.51
undernitrogen
a
atmosphere.IlltheTGcurve.1undergoes
dehydra-
to
However,thelengthoftheInidgebondsN—PbandPb???
tionprocessduringthetemperatLlrerangefrom100
Pb
are
d珊erent(0.2892mnfor2,0.279l
nnl
for27,
150℃with
lossof
one
a
wei【ghtlossof4.81%correspondingtothe
the
0.2848nm
for朋.11le
43
stronghydrogenbondringmotif
water
molecule(ealed.4.62%、.Then
antil200℃and
心5…N6‘0.295
m,’2%,l—如11)is
identified∞
pounda∞stable
loses72.81%
孚
氢
亭
TempeⅢcIIre,℃Temperaiure/℃
Fig.5
TGcurve¥of10efl)and2∞ght)
372
无机化学学报第28卷
(calcd.74.81%),which
isdue
to
thedepositionof
ligand
ejectingnitrogengas闭.For2.itfirstlylosesthe
latticewaterbetween50and1lO℃.andthen108e8en
moleculesat
around220℃.afterthat
a
seriesofweight
lossesupto
700oCarefound.
2.3
Effects
on
thermaldepositionof
ammonium
percldorate
Tochecktheeffectsofthermaldeposition
of
AP
after
adding
the
as—synthesizedpounds.
pounds1and2and
APweremixed
at
a
massratio
of1:3
to
preparethetargetsamplesfor
thermal
de-
positionanalyses.A
totalsamplemassusedwasless
than1.0mgforallruns.11heKissiger7
s
methodwas
used
to
investigatetheapparentactivate
energy(目and
thepre—exponential
factor(A)by
fourdifferentheat
rates
of5,10,15and20oC?min~[2S1.DSC
curve
ofAP
hasthreepeaksunder
ourexperimentscondition.The
firstendothermicpeak
at
242℃isattributed
to
the
crystallographictransitionofAPfromorthorhombicto
cubic.Thesecondpeakat
288oCisexothermic。which
iscorresponding
to
thelow-temperaturedeposition
fLTD).ThethirdpeakfollowingtheLTDinstantlyis
an
endothermie
peak
whichis
assigned
to
the
hi【gh-
temperaturedepositionrHTD).neHTDprocess
eitherexothermic
or
endothermicprocess,depending
on
thepetition
between
sublimationandthermal
depositiontn-s21.
Afteraddingthepounds1
and2as
theadditivestothe
AP,thefirstendothermic
peak
of
crystallographictransitionwas
not
affected.Butthe
deposition
ofAPhas
changed,the
endothermie
HTDprocesschange
to
theexothermie
or
converttoone
exothermicpeakwiththeLTD.Comparedto
theHTDofthepureAP,the
depositiontemperatureis
lower,as
showninFig.6.ForAPwithplexes1and2astheadditives
respectively,the
twodeposition
process
beeto
a
broad
exothermicbandwithone
or
severalpeaks,which
isduethe
poundsdepose
earlier
than
thepureAP.
ComparingtheDSC
curves
of1and2withtheAP,
thedepositionpeakstemperature(功ofthemixturefor
adding2arelowerthanthatfor1aswellasthe
activationenergyofthemixture,asillustratedinTable
产
钿
拿≥
旦
、暑
芑
惹
王
100200300400500
Temperature/"12
Fig.6
DSC
curve8
forAP,APafteradding1and2
respectively
4.Therefore,2showsbetter
on
the
depositionof
AP
than
1,whichisconsistentwiththereportthatthelead
energetic
4一(2,4.6?trinitroa-nilino)benzoic
acidsalts
performsbetterthan
itscobalt
or
nickelsalts
forthe
propellantspsi.Insummary,theanalyses
resultsreveal
thatboththetwometalpoundswithH2btaligandhave
significantimpact
on
thethermaldepositionof
AP,andaregoodcandidatesoftheadditivesfortheAP—based
propellants.
Table4
KineticparametersofthermaldepositionforAPandAPwithaddilives
LandAH
were
siven
at
theheating
rateof10℃?min。1
References:
【11KulkamiPB,ReddyTS,NairJK,eta1.上Hazard.Mater.,
2帅5.:54-60【2】StierstorferJ,Tarantik
KR,KlaptkeTM.Chem.Eur.正,
20眇.15:5775.5792【3】HartdegenV,KlaprtkeTM,SpmllSM.Inorg.Chem.,2009,
镐:9549-9556
【41
Friedrich
M,Galvez—RuizJC,KlaptkeTM,eta1.1norg.
Chem.,瑚5,44:8044.8052
【5】KlapfitkeTM,SabateCM,WelchJM.Eur.上lnorg.Chem.,
2009:769.776
【6】KlapiItke
TM,SabateCM,RaspM.DaltonTram.,2009:1825
.1834
【7】Karaghiosoffl('Klaptke
TM,SabateCM.Chem.一Eur.上,
第2期谢钢等:5.氨基双四唑富氮配位化合物的合成、结构及其对高氯酸铵的热分解影响
373
2∞9.15:1164.1176
【8】ZHAOFeng-Qi(赵凤起),CHENSan—Ping(I冻三平),FAN
Guang(范广),eta1.Chem.上ChineseUniversities(Gaodeng
XuexiaoHuaxue
Xuebao)。2∞8,29:1519—1522
【9】GaoE
Q,LiuN,ChengAL'eta1.Chem.Commun.,2007:
2470.2472
【10]t|Il
YB,WangMS,ZhouWW,eta1.1norg.Chem.,2008,47:
8935.8942
【l1]JaniakC,ScharmannTG,BrzezinkaKW,eta1.Chem.Ber.,
1995,128:323.328
【12]HorikeS,DincaM,TamakiIL
et
a1.上Am.Chem.Soc.,
2008.130:5854.5855
【13]Li
JR,TaoY,Yu
Q,eta1.Chem.-Ear.上,2008,14:2771—
2776
[14]Dinc2iM,YuAF,LongJ
R.上Am.Chem.Soc.,2006,128:
8904.8913
XM,JiangT,WuHS,et
a1.Inorg.Chem.,20眇,48:
4536-4541
QY,LiY,ZhengFK,eta1.1norg.Chem.Commun.,
200&11:969.971
C,Seharmann
TG.Polyhedron,2003,22:1一l133
TM,MayerP,Mir6Sabat6C,eta1.1norg.Chem.,
2∞8.47:6014.6027G,Klap6tkeTK.Angew.Chem.,Int.Ed.,2000,
47:3330-3338
【20]SinghRP,VermaRD,MeshriDT,eta1.Angew.,Chem.Int.
肚.2伽16.45:3584-360l
【211Ioo
Y
H,TwamleyB,GargS,eta1.Angew.Chem.,Int.Ed.,
2∞8.47:6236.6239
【22]Zheng
LL,LiHX,LengJD,eta1.Ear.上lnorg.Chem.,
2008:213.217
【23]PundlikSM,Palaiah
RS,NairJK,eta1.正Energ.Mater.,
2∞1.19:339-347【24]Cui
P,LiFS,ZhouJ,etai.Propellants,Explos.Pyrotech.,
2伽16.31:452-455
【25]Chen
L
J,“LP,LiGS.上attoysCompd.,2008,464:532—
536
【26]SheldrickGM.SHELXS-97,ProgramforSolutionofCrystal
Structures,UniversityofGottingen,Germany,1997.
[27]Sheldrick
G
M.SHELXL-97.Program/or
Refine删of
CrystalStructures,UniversityofGottingen,Germany,1997.
【28]WangWT,Chen
SP,GaoSL.Ear.jInorg.Chem.,2009:
3475.3480
MC.Acc.Chem.Res.。1990,23:120-126
[30]PoturovicS,LuD,HeegMJ,eta1.Polyhedron.,2008,27:
3280.3286
AJ,VyazovkinS.Combust.Flame.,2006。145:779-790
S,WightCA.Chem.Mater.,1999,11:3386—3393
[15]Zhang
[16]Chen【29]Etter
【17]Janiak【19]Steinhauser
[31]Lang
[18]Klap6tke【32]Vyazovkin
5-氨基双四唑富氮配位化合物的合成、结构及其对高氯酸铵的热分解影响
作者:作者单位:刊名:英文刊名:年,卷(期):
谢钢, 夏正强, 陈三平, 高胜利, XIE Gang, XIA Zheng-Qiang, CHEN San-Ping, GAO Sheng-Li合成与天然功能分子教育部重点实验室,西北大学化学与材料科学学院,西安710069无机化学学报
Chinese Journal of Inorganic Chemistry2012,28(2)
1.Kulkarni P B;Reddy T S;Nair J K 查看详情 20052.Stierstorfer J;Tarantik K R;Klaptke T M 查看详情 20093.Hartdegen V;Klap(O)tke T M;Sproll S M 查看详情 20094.Friedrich M;Galvez-Ruiz J C;Klaptke T M 查看详情 20055.Klap(O)tke T M;Sabate C M;Welch J M 查看详情 20096.Klap(o)tke T M;Sabate C M;Rasp M 查看详情 20097.Karaghiosoff K;Klaptke T M;Sabate C M 查看详情 20098.赵凤起;陈三平;范广 查看详情 20089.Gao E Q;Liu N;Cheng A L 查看详情 200710.Lu Y B;Wang M S;Zhou W W 查看详情 2008
11.Janiak C;Scharmann T G;Brzezinka K W 查看详情 199512.Horike S;Dinca M;Tamaki K 查看详情 200813.Li J R;Tao Y;Yu Q 查看详情 200814.Dincǎ M;Yu A F;Long J R 查看详情 2006
15.Zhang X M;Jiang T;Wu H S Luminescence and energy transfer in Eu2+, Mn2+ co-doped Li4SrCa(SiO4)(2) for whitelight-emitting-diodes[外文期刊] 2009(38)16.Chen Q Y;Li Y;Zheng F K 查看详情 200817.Janiak C;Scharmann T G 查看详情 2003
18.Klap(o)tke T M;Mayer P;Miró Sabaté C 查看详情 200819.Steinhauser G;Klap(o)tke T K 查看详情 200820.Singh R P;Verma R D;Meshri D T 查看详情 200621.Joo Y H;Twamley B;Garg S 查看详情 200822.Zheng L L;Li H X;Leng J D 查看详情 200823.Pundlik S M;Palaiah R S;Nair J K 查看详情 200124.Cui P;Li F S;Zhou J 查看详情 200625.Chen L J;Li L P;Li G S 查看详情 2008
26.Sheldrick G M SHELXS-97,Program for Solution of Crystal Structures 199727.Sheldrick G M SHELXL-97,Program for Refinement of Crystal Structures 199728.Wang W T;Chen S P;Gao S L 查看详情 200929.Etter M C 查看详情 1990
30.Poturovic S;Lu D;Heeg M J 查看详情 200831.Lang A J;Vyazovkin S 查看详情 200632.Vyazovkin S;Wight C A 查看详情 1999
本文链接:http://d.g.wanfangdata.com.cn/Periodical_wjhxxb201202027.aspx
范文三:高氯酸碳酰肼钴、高氯酸碳酰肼镍快速热分解反应动力学
[Article]
www.whxb.pku.edu.cn
物理化学学报 (Wuli Huaxue Xuebao )
June Acta Phys. ? Chim. Sin ., 2006, 22(6):649~ 652
Received:October 12, 2005; Revised:October 26, 2005.
?
Correspondent, E ? mail:ztlbit@bit.edu.cn;Tel/Fax:010? 68911202.
国家自然科学基金 (20471008)和北京理工大学基础研究基金 (BIT? UBF ? 200302B01, BIT ? UBF ? 200502B4221) 资助项目
? Editorial office of Acta Physico ? Chimica Sinica
高氯酸碳酰肼钴、 高氯酸碳酰肼镍快速热分解反应动力学
孙远华
张同来 ?
张建国 杨 利 乔小晶
(北京理工大学机电工程学院 , 爆炸科学与技术国家重点实验室 , 北京
100081)
摘要
利用温度跃升傅立叶变换红外原位分析技术 (T? jump/FTIR)对高氯酸碳酰肼钴和高氯酸碳酰肼镍的快速
热分解反应进行了研究 . 研究表明 , 目标化合物快速热分解逸出的主要气相产物是 CO 2, H 2O, HCN, HNCO 和 HONO. 借助快速升温过程中 Pt 金属丝的控制电压变化曲 线得到剧烈放 热 峰 的 诱导 出 现时间 t x , 利用 t x 值计算 了 两种 目标化合物的快速热分解 动力 学 参数 . 在 0.1MPa 氩 气气 氛 , 613~ 653K 的实验温度 范围内 , 高氯酸碳酰 肼钴的 活 化 能 E a =39.42kJ ·mol -1, ln A =5.93;在 0.1MPa 氩 气气 氛 , 618~ 678K 的实验温度 范围内 , 高氯酸碳酰肼 镍的 活 化 能 E a =60.44kJ ·mol -1, ln A =9.40.关键词 :高氯酸钴 , 高氯酸镍 , 碳酰肼 ,
热 动力 学 ,
快速热分解 ,
温度快速跃升傅立叶变换红外 光谱
中图分类号 :O642,
TQ564.4
Kinetics of Flash Pyrolysis of [Co(CHZ)3](ClO4) 2and [Ni(CHZ)3](ClO4) 2
SUN, Yuan ? Hua
ZHANG, Tong ? Lai ?
ZHANG, Jian ? Guo
YANG, Li
QIAO, Xiao ? Jing
(State Key Laboratory of Explosion Science and Technology, School of Mechano ? Electronic Engineering,
Beijing Institute of Technology, Beijing
100081, P. R. China )
Abstract
T ? jump/FTIRspectroscopy was used to study thermal decomposition of energetic material [Co(CHZ)3](ClO4) 2
and [Ni(CHZ)3](ClO4) 2in thin film with rapid heating rate. During the exothermic decomposition process, the major gas products were identified as CO 2, H 2O, HCN, HNCO, and HONO. Time ? to ? exotherm (t x ) kinetics method derived from the control voltage trace of T ? jump/FTIRspectroscopy was introduced to resolve kinetics of the exothermic decomposition reaction of flash pyrolysis of the title compounds. In the temperature range of 613~ 653K under 0.1MPa Ar atmosphere the Arrhenius activation energy of the exothermic decomposition reaction of [Co(CHZ)3](ClO4) 2was determined to be E a =39.42kJ ·mol -1and ln A =5.93.The Arrhenius activation energy of [Ni(CHZ)3](ClO4) 2was determined to be E a =60.44kJ ·mol -1and ln A =9.40in the temperature range of 618~ 678K under 0.1MPa Ar atmosphere. Keywords :Cobalt perchlorate,
Nickel perchlorate,
Carbohydrazide,
Thermal kinetics,
Flash pyrolysis,
T ? jump /FTIRspectroscopy
Carbohydrazide (CHZ,NH 2NHCONHNH 2) is a hydrazine derivative in white crystal with strong reducing behaviors. It can be used as multidentate ligand owing to its several coordination atoms (fournitrogen atoms and one oxygen atom), and its coor-dination compounds can be used in the field of medicine, petroleum, national defense, energetic materials, and so on [1]. In the field of energetic materials, carbohydrazide has many pecu-liar applications, which can be not only used as ingredient of pro-pellants [2? 3]but also can be combined into powerful explosives [4? 5]. Carbohydrazide can be combined with stable inorganic molecules via coordination reaction to form explosives with good heat ? resistant performance and initiating ability. It can be foreseen that carbohydrazide and its coordination compounds will be used more and more widely with the development of sci-
649
Acta Phys. 鄄 Chim. Sin. (Wuli Huaxue Xuebao ) , 2006Vol.22
ence and technology.
Recently, carbohydrazide energetic coordination com-pounds have received extensive attentions due to their potential properties, such as good fluidity and lower sensitivities [6-10]. Among the coordination compounds, carbohydrazide and perchlorate show good explosive properties. For example, [Ni(CHZ)3](ClO4) 2(NiCP),which has been studied roundly and indepth, is proved to be a new potential primary explosive with similar initiating ability to diazodinitrophenol (DDNP),and [Co(CHZ)3](ClO4) 2(CoCP)can be used as primary explosive in detonators. The preparation, molecular structure, and explosive property of the two coordination compounds have been reported previously [11? 12]. The thermal decomposition mechanisms are stud-ied by using DSC, TG ? DTG, and FTIR technologies. Kissinger method and Ozawa ? Doyle method are used to treat the non ? isothermal kinetics processes, and values of activation energy and preexponential factor are calculated out.
However, most knowledge about the thermal decomposi-tion kinetics of energetic materials is obtained from relatively low heating rates. When solid energetic materials burn, in fact, a steep temperature gradient is produced at the surface zone. Thus, the kinetics determined by DSC method is not applicable to the combustion conditions. Consequently, T ? jump/FTIRspec-troscopy [13]is introduced to study flash pyrolysis of energetic ma-terials [14? 16]. The time ? to ? exotherm (t x ) values derived from the con-trol voltage traces of the Pt filament can be used in conjunction with the theory of thermal explosion to determine the global ki-netics.
The aim of this work is to study kinetics of the exothermic decomposition reaction of flash pyrolysis of CoCP and NiCP by the time ? to ? exotherm (t x ) kinetics method, which enables compar-isons to be made between DSC method and T ? jump/FTIRspec-troscopy. These data are quite useful in the evaluation of their thermal stability under rapid heating conditions and can be in-corporated into models of steady and possibly unsteady combus-tion.
1Experimental
CoCP and NiCP used in this research work were prepared according to the method reported previously [11? 12], the obtained crystals were purified with distilled water and dried in vacuum at 333K for 6h prior to use.
By using T ? jump/FTIRspectroscopy [13]the title compounds were pyrolyzed at rapid heating rate. While the gas products were determined in real ? time, the thermochemical events in the condensed phase were recorded simultaneously. The homebuilt IR cell [17]consisted of antireflection ? coated ZnSe windows and a 3.8cm path length. Pt filament was situated along axis of the cell about 3mm below focal point of the IR beam.
Approximately 300μ g of sample was thinly spread on the center of the Pt filament for each pyrolysis run. The procedure was to load the cell, flush it with Ar, and adjust the pressure to desired level. A pressure of 0.1MPa was used in present work. Heating occurred by using the CDS Analytical Pyroprobe at about 400K ·s -1to the chosen temperature, then held for 20s to keep isothermal while the decomposition gas products were ana-lyzed by rapid ? scan FTIR spectroscopy. T ? jump/FTIRwas the rapid ? heating complement to conventional thermal analysis tech-niques, such as TGA and DSC. It was intended to provide in-sight into chemical and physical processes during ignition, com-bustion, or explosion of a bulk material. This chemistry might not be extracted by slowly heating the material, because “ cook-ing ” frequently led to side products that had little or no impor-tance in the combustion scheme. The chemistry of combustion could only be learned from rapid heating diagnostics. Instead of forming a flame, the decomposition gas products were quenched by the cool Ar atmosphere. The absorbance IR spectra were recorded at 4cm -1resolution, 0.25s intervals on a Nicolet 20 SXB FTIR spectrometer with an MCT detector.
The Pt filament was an element of a very rapidly respond-ing and sensitive circuit [16]. By recording the control voltage with or without sample present under the same conditions, and then subtracting the two traces, one obtained a difference control voltage trace. An endotherm such as melting or release of hydra-tion H 2O produced an upward deflection, whereas a downward deflection marked an exotherm, such as decomposition of the energetic component. Monitoring the control voltage as a func-tion of time uncovered the sequential thermochemical events of the compound.
2Kinetics of the flash pyrolysis
An exotherm produces a sharp spike in the control voltage trace, which marks the time ? to ? exotherm (ignitionor explosion) value. The time ? to ? exotherm kinetics method can be employed to determine the kinetics parameters and indicate the formation rate of the gas products of the flash pyrolysis.
650
No.6ZHANG, Tong ? Lai et al . :Kinetics of Flash Pyrolysis of [Co(CHZ)3](ClO4) 2and [Ni(CHZ)3](ClO4) 2ln(1-α )=k (T ) t
(1)
The rate expression is shown in Eq. (1)[18], where α is amount of sample decomposed and t is time. Under adiabatic or isothermal conditions whose relationship to k (T ) is given by the heat balance Eq.(2)[18], where λ is the thermal diffusivity, C p is the specific heat capacity, and Q is the heat of reaction which can be derived from the DSC measurement. Eq.(2)cannot be solved under nonisothermal or nonadiabatic conditions.
-λ ▽ 2T +ρ C p (dT /dt )=ρ QA (1-α ) e -E a /RT
(2)
Under adiabatic conditions (λ ▽ 2T =0),such as time ? to ? explosion or time ? to ? exotherm experiments [19? 20], the apparent acti-vation energy can be calculated from Eq.(3),where t x is the time ? to ? exotherm value at temperature T . The intercept (γ ) is not the conventional Arrhenius preexponential factor A , but is assumed to be about -ln A [21]. Values of E a and ln A are chosen to give the cumulative decomposition rate. They do not refer to a specific reaction or event.
ln t x =E a /RT +γ
(3)
3Results and discussion
Fig.1shows IR spectra of the gas products 2s after the exotherm when CoCP and NiCP are heated under 0.1MPa Ar to the chosen temperature. The IR modes are assigned to the corre-sponding molecules based on close match of the frequencies. Wide vibration absorption peak of H 2O molecule appears around 3620~3100cm -1, the 2340cm -1absorption peak can be assigned to CO 2molecule. Flash pyrolysis of the two title compounds pro-duces HONO, which can be recognized from the absorption peak near 1400cm -1. The absorption peaks at 1050cm -1and 669cm -1are assigned to HCN and HNCO, respectively. It should be
noted that H 2O is able to condense in the cool Ar atmosphere of the cell and on the cell walls to some extent, so it is of great dif-ficulty to quantify the gaseous H 2O accurately. N 2is not ob-served in this work because it is not IR ? active, but is known to be an abundant flash pyrolysis gas product previously and should be added as necessary.
Typical control voltage traces of the Pt filament of flash py-rolysis of NiCP under 0.1MPa Ar atmosphere are shown in Fig. 2. The inflection is positive at first, indicating that an endother-mic process occurs at initial flash pyrolysis process. Then there exists an intense negative inflection, which indicates that the compound sends out heat sharply in the exothermic decomposi-tion process. Flash pyrolysis of CoCP also consists of one en-dothermic process and one intense exothermic decomposition process. From the control voltage traces, we can get the t x values at different temperatures (shownin Table 1), where t x is the aver-age value of five identical experiments, the relative error is no more than 1.0%.The temperature range is chosen as 60~100K above the decomposition temperature measured by DSC and TGA methods [11].
The experimental measurements of t x were then plotted 1/T (shownin Fig.3) to obtain the activation energy E a
and
Fig.1IR spectra of the gas products from flash pyrolysis of CoCP and NiCP under 0.1MPa
Ar
Fig.2
Typical control voltage traces of the Pt filament of NiCP under 0.1MPa Ar
x 6216288.666316486.006416584.98651
6684.42678
3.94
x 3.803.323.002.64
Table 1
t x values of the Pt filament of CoCP and NiCP at different temperatures under 0.1MPa Ar 651
Acta Phys. 鄄 Chim. Sin. (Wuli Huaxue Xuebao ) , 2006
Vol.22
ln A . In the range of 613~653K under 0.1MPa Ar the kinetics parameters of CoCP:E a =39.42kJ ·mol -1
and ln A =5.93, the cor-relation coefficient R is 0.995and the root ? mean ? square devia-tion SD is 0.018. Kinetics of flash pyrolysis of NiCP is deter-mined to be E a =60.44kJ ·mol -1and ln A =9.40in the temperature range of 618~678K under 0.1MPa Ar atmosphere, R is 0.996and SD is 0.042.
The values of activation energy E a determined experimen-tally here for the exothermic decomposition reaction of flash py-rolysis of the two title compounds by using T ? jump/FTIRspec-troscopy are much smaller than those given previously by Kissinger and Ozawa ? Doyle method [11], the same trend also occurs with several energetic materials such as HMX and RDX [22]. Change in the heating rate can affect the relation between evaporation and decomposition. In addition, the amount of the explosive used in flash pyrolysis experiments is very small, therefore, the thermal explosion is very sensitive to heat losses. This is the rea-son for the observed strong difference from data of DSC experi-ments. In fact, starting with Merzhanov et al . [23], a number of au-thors [24? 25]have noticed this point. The kinetics determined here are essential for detailed combustion modeling of solid energetic materials.
4Conclusions
Relatively little is known about the chemistry at the sur-face of a burning energetic material owing to the fact that many parallel, multiphase reactions occur over a short linear dimen-sion. T ? jump/FTIRspectroscopy is used to study thermal de-composition of energetic material with rapid heating rate. Be-cause the heating rate and temperature can be controlled, the surface reaction zone of energetic material during combustion is experimentally simulated. During the exothermic decomposition processes of the two title compounds, the major gas products are
identified as CO 2, H 2O, HCN, HNCO, and HONO. Values of E a determined herein by T ? jump/FTIRspectroscopy are smaller than those given by Kissinger and Ozawa ? Doyle method, which makes these E a values qualitatively consistent. The values deter-mined by using T ? jump/FTIRspectroscopy are quite useful in evaluation of thermal stability under rapid heating conditions and can be incorporated into steady combustion modelling. References
1Campbll, G. Inorg. Nucl. Chem. Lett., 1976, 12:545
2
Klaus, K. O.; Klaus, H. D.; Lothar, R. W. Preparation of 4? amino ? 1, 2, 4? triazol ? 5? one. US Patent, 5152326. 1992
3Kien, Y. L.; Mwry, S. Amines salts of nitroazoles. US Patent, 5246792. 1993
4Baradie, Y. E. Egypt. J. Chem., 1985, 28:295
5Collignon, S. Preparation of carbohydraziniam dinitrate propellant oxidizer. US Patent, 5473211. 1970
6Ivanov, M. G.; Kalinichenko, I. I. Z. Neorg. Khim., 1984, 29:926
7Ivanov, M. G.; Kalinichenko, I. I.; Savitskiia, M. Koord Khim., 1985, 11:45
8Sindiskii, V. P.; Veridub, T. Y.; Fogelzang, A. E. Z. Neorg. Khim., 1990, 35:685
9
Zhang, J. G.; Zhang, T. L.; Wei, Z. R.; Yu, K. B. Chem. J. Chin. Univ., 2001, 22:895
[张建 国 , 张同来 , 魏昭荣 , 郁开 北 . 高 等 学
校 化学学报 (Gaodeng Xuexiao Huaxue Xuebao ), 2001, 22:895]10Zhang, T. L.; Song, J. C.; Zhang, J. G.; Ma, G. X.; Yu, K. B.
Z . Naturforsch. B, 2005, 60:50511
Lu, C. H. Ph. D. Dissertation. Beijing:Beijing Institute of Technology, 2000[吕春华 . 博士 学位 论文 . 北京 :北京理工大
学 , 2000]
12Zhang, Z. G.; Zhang, J. G.; Zhang, T. L.; Yang, Y. M. Energetic
Materials, 2001, 9:49[张志刚 , 张建 国 , 张同来 , 杨永 明 .
含能材料 (Hannen Cailiao ), 2001, 9:49]
13Brill, T. B.; Brush, P. J.; Shepherd, J. E.; Pfeiffer, K. J. Appl. Spectrosc., 1992, 46:900
14Tappan, B. C.; Beal, R. W.; Brill, T. B. Thermochim. Acta, 2002, 388:227
15Parr, R. G.; Crawford, B. L. J. Phys. Colloid Chem., 1950, 54:88516
Brill, T. B.; Brush, P. J. Phil. Trans. R. Soc. Lond. A, 1992, 339:377
17Oyumi, Y.; Brill, T. B. Combust. Flame., 1985, 62:21318Brill, T. B.; James, K. J. Chem. Rev., 1993, 93:266719Zinn, J.; Mader, C. L. J. Appl. Phys., 1960, 31:32320Zinn, J.; Rogers, R. N. J. Appl. Phys., 1962, 66:264621Williams, G. K.; Brill, T. B. J. Phys. Chem., 1995, 99:1253622Brill, T. B.; Gongwer, P. E.; Williams, G. K. J. Phys. Chem., 1994, 98:12242
23Merzhanov, A. G.; Dubovitskii, F. I. Proc. USA Acad. Sci., 1959, 129:153
24Kubota, N. Prog. Astronaut. Aeronaut J., 1984, 90:125
Lengelle, G. Am. I. Aeronaut. Astronaut J., 1970, 8:
1989
Fig.3
The Arrhenius ? type plot of the time ? to ? exotherm for CoCP and NiCP under 0.1MPa Ar
652
范文四:铵盐受热分解
铵盐叐热分解
http://www.yjsyi.com/ 配方检测 实验演示 操作方法 取一支干净的试管,装入氯化铵晶体,对试管加热,观察发生的现象。 实验现象 试管里产生大量白烟,试管中上部内壁有白色固体附着。试管底部固体越来越少直至消失。 叐热时,氯化铵分解生成氨和氯化氢,冷却时它们又重新生成氯化铵。 实验结论 叐热时,氯化铵分解生成氨和氯化氢,冷却时它们又重新生成氯化铵。反应方程式为:NH4Cl NH3 , HCl NH3 , HClNH4Cl 实验考点 1、铵盐叐热分解觃律;2、一些固体中含有氯化铵杂质的去除方法。 经典考题 1、有关铵盐的性质正确的是 A、都是晶体,都能溶于水 B、叐热时分解,都有NH3产生 C、不碱共热时不一定产生氨气 D、都能不酸反应 试题难度:易 2、用加热的方法可分离的一组物质是 A、氯化铵和消石灰 B、碳铵和过氧化钠 C、碘和食盐 D、硝酸铵和硫酸钠 试题难度:中 3、氢化铵(NH4H)不氯化铵的结构相似,又知NH4H不水反应有H2生成, 下列叒述不正确的是 ( ). A、NH4H是离子化合物,固态时属离子晶体 B、NH4H溶于水,所形成的溶液显酸性 C、NH4H固体投入少量的水中,有两种气体产生 D、NH4H不水反应时,NH4H是氧化剂 试题难度:难 1 答案:A 解析:铵盐的共性,都溶于水,都分解但不都生成氨气,都可以和碱反应生成氨气。 2 答案:C 解析:加热时氯化铵和消石灰都分解,所以不能加热分离;B中过氧化钠和碳铵分解的产物CO2 和H2O反应;C 可以利用碘的升华加热分开;D 中硝酸铵分解生成氮气,不能再得到硝酸铵了。 3 答案:BD 解析:性质同铵盐,都是离子晶体,和水反应时,铵离子结合水电离出的氢氧根离子生成一水合氨分子,,1价的氢结合水电离的氢离子生成氢气,所以溶液呈碱性,有氨气和氢气逸出,,1价的氢被氧化成0价,NH4H作还原剂。 神秘失踪的化肥 有一个商人批发了一批化肥,当他售完核对时,
发现有几百斤化肥神秘地失踪了,是被人偷走了,还是另有他因?其实,这是一种氮素化肥,叫碳酸氢铵。夏天气温太高,加上空气潮湿,这种化肥就会蒸发到大气中,所以化肥少了那么多。碳酸氢铵在20?常温下基本不发,若一旦超过30?,就会分解,生成气体逃到空气中。碳酸氢铵简称碳铵,是目前施用较普遍的肥料品种之一。碳酸氢铵17%左右,为白色细粒,结晶体,有强烈的氨臭味,易溶于水,肥效迅速,它的水溶液呈碱性反应。干燥的碳铵在20?以下基本稳定,当温度升高而空气温度较大时易吸湿分解,造成氨的挥发而损失氮素。所以运输和贮存都要包装严密,保持低温干燥。碳铵不能和钙镁磷肥或草林灰混合,因为后两种肥料都是碱性的,混合后会加速碳铵分解而损失氮素。碳铵也不宜不氯化钾混合放置过久,因氯化钾吸湿性大,碳铵可以和过磷酸钙混合,因过磷酸钙一般是酸性的,而丏混合后有部分转发为磷酸铵,可减少铵的挥发,但是如果过磷酸钙含酸较高,容易吸湿,混合后堆放过久也会有氨的挥发,所以混合后以尽快施用为宜。 安全气囊的概述 安全气囊是汽车被动安全中一项技术含量很高的产品。它的保护效果已经被人们普遍认识,有关安全气囊的第一个与利始于1958年。1970年就有厂家开始研制可以减轻碰撞事故中乘员伤害程度的安全气囊;20丐纪80年代,汽车生产厂家开始逐渐装用安全气囊;进入90年代,安全气囊的装用量急剧上升;而进入新丐纪以后,汽车上普遍都装有安全气囊。 汽车安全气囊系统,简称SRS,是辅助安全系统,它通常是作为安全带的辅助安全装置出现。安全带不安全气囊是配套使用,没有安全带,安全气囊的安全效果将要大打折扣。据调查,单独使用安全气囊可使事故死亡率降低18%左右,单独使用安全带可使事故死亡率下降42%左右,而当安全气囊不安全带配合使用时可使事故死亡率降低47%左右。由此可见,只有两者相互配合才能最大可能的降低事故的死亡率,安全气囊系统必然作为安全带的辅助系统出现。 当发生碰撞事故时,安全带将乘员“约束”在座椅上,使乘员的身体不至于撞到方向盘、仪表板和风窗玻璃上,避免乘员发生二次碰撞;同时避免乘员在车辆发生翻滚
等危险情况下被抛离座位。安全气囊的保护原理是:当汽车遭叐一定碰撞力量以后,气囊系统就会引发某种类似小剂量炸药爆炸的化学反应,隐藏在车内的安全气囊就在瞬间充气弹出,在乘员的身体不车内设备碰撞之前起到铺垫作用,减轻身体所叐冲击力,从而达到减轻乘员伤害的效果。 安全气囊系统称为SRS,相对于安全带,安全气囊只是一个辅助保护设备。安全气囊是用带橡胶衬里的特种织物尼龙制成,工作时用无害的氦气填充。此系统由一个传感器激活,该传感器用于监规碰撞中汽车速度减小的程度。在碰撞发生的早期,安全气囊开始充气,安全充气大约需要0.03秒。安全气囊以非常快的速度充气十分重要,这能确保当乘客的身体被安全带束缚不动而头部仍然向前行进时,安全气囊能及时到位。在头部碰到安全气囊时,安全气囊通过气囊表面的气孔开始排气。气体的排出有一定的速率,确保让人的身体部位缓慢地减速。由于安全气囊弹开充气的速度可高达320公里/小时,碰撞时如果人的乘坐姿势不正确,将给人带来严重的伤害。 如果前排装备了安全气囊,不要让6岁或140cm以下的儿童坐在前座,更不要将婴儿座椅安置在前乘客座。 安全最为重要!现场爆破的安全气囊是VOLVOS80的双段式前安全气囊,分为两段激活式,能够根据碰撞强度设定气囊的充气压力,更加人性化地保护驾驶者的人身安全。严重碰撞时,气囊迅速充气,压力最大;非严重碰撞时,气囊先充70%的气体,经过0.1秒的间隔后再充30%的气体,从而来减小充气压力,让人的头部不气囊更柔和地接触。VOLVOS80轿车配备有22个安全气囊,有前部先进的双段式安全气囊,安装在前乘客座上的保护乘客胸部的SIPS防侧撞气囊,还有保护侧面乘客头部的IC气帘等。 瑞典VOLVO轿车以安全高质闻名于丐,1959年VOLVO的工程师发明了三点式安全带,至今已拯救了数百万人的生命。 在正面撞车时,安全带是最重要的安全设施,但实际上在严重碰撞中它也只能避免头部叐重伤。因为尽管有安全带,但在发生严重碰撞时人的上身还是会由于巨大的惯性而往前冲。所以安全带只有不气囊配合起来,才能使乘客在重大事故中得到最好的保护。 化学原理:
汽车的安全气囊内有叓氮化钠,NaN3,或硝酸铵,NH4NO3,等物质。当汽车在高速行驶中叐到猛烈撞击时,这些物质会迅速发生分解反应,产生大量气体,充满气囊。叓氮化钠分解产生氮气和固态钠;硝酸铵分解产生大量的一氧化二氮,N2O,气体和水蒸气。 高分网
范文五:高氯酸_四氨_双_5_硝基四唑_合钴_的热分解性能
() 高氯酸[ 四氨?双 52硝基四唑]
() 合钴 ? 的热分解性能
周建华, 程碧波, 李金山, 刘家彬
() 中国工程物理研究院化工材料研究所, 四川 绵阳 621900
() () () : 利用D SC 法研究了高氯酸 [ 四氨?双 52硝基四唑]合钴 BN C P 的热分解性能, 并与苯并三氧化呋咱 要?摘
艹() () B T F 和超细六硝基HN S2K 的热分解性能进行了比较, 用 K issinge r 法和O zaw a 法得到了BN C P、B T F、HN 氐
S2
K 热分解反应动力学参数。在10 ??的升温速率下, 的分解峰温为289. 6 ?, 比高 25. 4 ?, 其分解m in BN C P B T F 热 焓在3 者中最大。、研究表明, 在 100 ?以下具有良好的热安定性。法得到的分V STT G BN C P K issinge r BN C P 解表
观活化能为 178. 3 ?比和 2K 分别低 46. 4 ?和 43. 1 ?而用法得到的分, ; kJ kJ kJ m o lB T F HN Sm o l m o lO zaw a BN C P 解 表观活化能为 187. 5 比和2K 分别低约 33. 8、32. 8 。?, ?kJ m o lB T F HN SkJ m o l () 文献标志码: A 文章编号: 100727812 20080320064203 中图分类号: T J 55; TQ 563
关键词: 物理化学; ; ; 2K ; ; ; 热分解; 动力学参数 BN C PB T FHN SD SCV ST
Therm a l D ecom po s it ion Proper ty of BNCP
2222, ,, ZHOU J ian h uaCH EN G B ibo L I J in sh an L IU J iab in
( )In st itu te o f C h em ica l M a te r ia ls, CA E P , M ianyang S ich uan 621900, C h ina
2 ( ) ( ): 2522222? A bstrac tT h e th e rm a l decom po sit io n p rop e r ty o f b isn it ro H te t razo la to N te t raam ine co ba lt
() 2K . p e rcho ra te BN C P w a s inve st iga ted by D SC and com p a red w ith tho se o f B T F and HN ST h e k ine t ic
, 2K ′p a ram e te r s o f th e rm a l decom po sit io n o f BN C P B T F and HN Sw e re ca lcu la ted by K issinge rs m e tho d and
′??, 25. 4 ?. 10?289. 6 O zaw as m e tho dA t m in BN C P h a s an exo th e rm ic p eak o n th e D SC cu rve a t w h ich is
, . la rge r th an th a t o f B T F BN C P h a s th e la rge st decom po sit io n en th a lp y com p a red w ith BN C P and B T FBN C P is
100 ?, . th e rm a lly stab le unde r w h ich is co nf irm ed by V ST and T GT h e app a ren t ac t iva t io n ene rgy o f th e rm a l
′??178. 3 , 46. 4 decom po sit io n o f BN C P by K issinge rs m e tho d is kJ m o lw h ich is kJ m o l le ss th an th a t o f B T F and 43. 1 ?2K , ′??187. 5 , 33. 8 kJ m o l le ss th an th a t o f HN Sand by O zaw as m e tho d is kJ m o lbe ing le ss abo u t kJ m o l and32. 8 ?2K .kJ m o l th an tho se o f B T F and HN S
: ; ; ; 2K ; ; ; ; Key wordsp h y sica l ch em ist ryBN C PB T FHN SD SCV ST th e rm a l decom po sit io nk ine t ic p a ram e te r s
) IN 具 有 优 良 的 性 能, 广 泛 用 于 某 些 雷 管 的 起 爆 5 药。文献对、、2K 的制备、性能和BN C PB T FHN S引 言
应 用研究报道较多, 但对热分解性能进行比较的报含能材料的分解性能对其使用、贮存具有重要 道 1 22 () () 意义。高氯酸[ 四氨?双 52硝基四唑]合钴 ?较少。 本研究采用D SC 热分析方法对BN C P、B T 3 () 是20 世纪90 年代合成出的一种性能优BN C P F、 异 的 新 型 钝 感 起 爆 药, 具 有 较 好 的 耐 热 性 和 热 安 2K 的热分解性能进行了比较研究, 为的 HN SBN C P 定 4使用提供重要的热安定性数据。 性 , 在合成、产品制造中的危险性比常规起爆药要 1 实验
小 得多。BN C P 的爆热、比热容 均 较 大, 可 以 代 替
() 试剂与仪器、及其他传统起爆药, 用于雷管及激光 1. 1 P b N 3 2C P
试剂: 和 均为精制品, 中物院化工 BN C P B T F 起爆和点火元件中。 2 艹 () (; HN S 2K , 比表面积约为1 0m g , 中物 材 料研究所?苯并三氧化呋咱 B T F 和超细六硝基HN S2 氐
收稿日期: 2008204210; 修回日期: 2008205210 () 作者简介: 周建华 1965- , 女, 工程师, 从事炸药热分析研究。
(() () 周建华, 程碧波, 李金山, 等: 高氯酸 四氨?双 52硝基四唑]合钴 的热分解性能 ?第 31 卷第 3 期 65
( )( 0. 单 一试样为 院化工材料研究所。 0 ? 50 ?0. 01g, 实验温度为 100.
仪器: 差 式 扫 描 量 热 P YR IS D IAM ON D D SC ) 0. 5?, 加热时间48 h。BN C P 在 100 ?、48 h 下的放 仪, 美国 公司; 449综合热分析仪, 德国耐 P E STA C 气量为0. 20?0. 5 。根据772297 方法501. mL gGJB A 驰公司, 可同步得到和曲线; 真空安定性D SC T G 2 实 验装置, 中物院化工材料研究所。
评 定 安 定 性 合 格 标 准, 每 克 试 样 的 放 气 量 不 大 于1. 2 实验条件
2, 在 100 ?以下热安定性较好。 mL BN C P 差 式扫描量热实验 () : 样品量约 1; D SC m gN 2
2. 3 的热重实验 BN C P 气 氛, 载气流量 30?升温速率分别为 2、5、 ; mL m in
在流 量 为 30?、升 温 速 率 10 ??N 2 mL m inm in 10、20 ??。 m in
下, 的热重分析结果见图1。由图1 可以看出, BN C P () 热 重实验 : 样品量约 0. 5; 气氛, 载 T G m gN 2
在 低 温 100 ?以 下 较 为 稳 定, 质 量 损 失 为BN C P 气流量30升温速率10 ?。真空安定?; ?mL m inm in
1. 3% ; 在 150, 250 ?失 重 比 较 缓 慢, 质 量 损 失 为 性
12. 4% ; 在 250, 300 ?BN C P 发生迅 速 剧 烈 反 应,() 实验 : 样品量 0. 5 , 测试温度 100 ?, 持续加 V ST g
300 ?以后反应逐渐趋于稳定, 400 ?时所剩残渣质 热 48 。 h
量约为10% 。从曲线可以看出, 的分解较为完BN C P
全, 气体生成量大, 剩余残渣少。 2 结果与讨论
2. 1 BN C P 的D SC 特征量
表 1 为不同速率下的热分解数BN C P D SC 据。 由表 1 可见, 随着升温速率的提高, BN C P 分解反应 的峰温向高温方向偏移, 样品所对应的分解焓 D SC
均有所递增。没有熔化峰, 由 20 ?? ?H D BN C P m in升温速率下的曲线可以明显看出, 分解 D SC BN C P 峰 型 较 宽, 平 滑 而 不 对 称, 主 分 解 峰 在 后, 峰 值 为
图 1 在 10 ??m in 升温速率下BN C P 的 T G 曲线 300. 1 ?, 由于峰面积较大, 其热焓值也相对较大。
. 1 F igT G cu rve o f BN C P a t th e h ea t ing 不同速率下BN C P、B T F 和HN S2K 的D SC 数表 1 10 ??ra te o f m in 据 2K1 , T ab le D SC D a ta o f BN C P B T F and HN S
2. 4 与、2K 热分解结果比较 BN C P B T FHN SD SC a t d iffe ren t h ea t ing ra te s
图 2 为、、2K 在 10 ?升温 速?BN C PB T FHN Sm in ?H D ?H m ??Β? T P T m ??样品名称 - 1 - 1- 1 ? (J g?) ? (J ?g) (?m? in) 率下, 动态氮气气氛中的热分解曲线。 为了 D SC
2 261. 0 2 268. 3 86. 3 便于比较, 不同速率下的和 2K 的热分解 BN C P B T F HN S 5 280. 3 2 599. 0 88. 8 数据列于表 1。 D SC 10 289. 6 2 625. 6 88. 9 20 300. 1 4 156. 3 101. 1 2 263. 8 450. 8 14. 4 196. 4 B T F 196. 5 5 270. 7 587. 6 17. 6 197. 0 10 274. 2 678. 2 19. 5 197. 3 20 287. 9 1017. 7 23. 5 316. 4 HNS 2K 2 326. 3 889. 2 317. 3 5 327. 2 1117. 3 10 347. 7 1315. 0 317. 7 318. 0 20 357. 2 1342. 6 图 2 在 10 ?m in 升温速率下BN C P、 ?
、2K 的曲线 注: Β 为升温速率; B T FHN SD SC ?H D 为分解焓; T m 为熔点; ?H m 为熔融焓; 为分解峰温。T P . 2 , 2K F igD SC cu rve s o f BN C P B T F and HN Sa t 10 ??th e h ea t ing ra te o f m in 2. 2 BN C P 真空安定性实验 由图 2 和表 1 可见, 在 10 ?升温速率下, ?m in (按照 297 方法 501. 2 真空安定性试验 772GJB A ( ) 的熔点较低 197. 0 ?, 为液态分解, 其分解峰B T F ) 压力传感器法规定, 安定性试验如果为火工药剂,
火 炸 药 学 报 第 31 卷第 3 期 66
约为 10% , 分解热焓比B T F 和HN S2K 大, 其耐热温和分解焓分别为 274. 2 ?和678. 2 J g。BN C P 的 ?
性 分解峰温较高, 其耐热性能比好, 有着特有的 B T F
能比好。 B T F ()峰型和较大的热焓 约为2625. 6 ?。2K 的熔J g HN S
点为 317. 7 ?, 且 熔 化 伴 随 着 分 解, 分 解 峰 温 也 较 致谢: 对给予本工作帮助的沈永兴、夏敬琼、王平、房
和高, 说明2K 的耐热性能最好, 永曦等同志表示感谢。BN C P B T F HN S
热 焓大约为 1315. 0 ?介于和之间。, J gB T F BN C P
2. 5 、和2K 的热分解动力学参数 参考文献: BN C PB T F HN S
7 281 刘子如, 阴翠梅, 刘艳, 等. RD X 和 HM X 的热分解 [J . 将表 1 中 和 数据代入 方程 Β T P iK issin ge r () 火炸药学报, 2004, 27 4: 72275. Β )( d ln 22, , , . L IU Z iru Y IN C u im e iL IU Yan e t a lT h e rm a l 2 T P E ()1 = - [. decom po sit io n o f RD X and HM X J C h ine se Jo u rna l R 1 ( ) d T P () , 2004, 27 4: 72275.o f E xp lo sive s and P rop e llan t s
赵凤起, 胡荣祖, 陈沛, 等. 2, 5, 7, 92四硝基22, 5, 7, 92式中: Β 为升温速率, K s;?T p 为D SC 曲线的峰值温 2 四 为气体常数。计 度, K; E 为表观活化能, kJ ?m o l; R 氮 杂双环 4, 3, 0 壬酮28 的放热分解反应动力学 [ J .
() 火炸药学报, 2003, 26 4: 33236. 算得到BN C P 的热分解表观活化能为 178. 3 kJ m o l ?
22, , , . ZHA O F engq iHU R o ngzu CH EN P e ie t a l( 相关系数为0. 999 6) , 的热分解表观活化能 B T F E
K ine t ic s o f th e exo th e rm ic decom po sit io n reac t io n fo r 为 224. 7 相关系数为 0. 9558) , 2K 的热 ?(kJ m o l HN S
2, 5, 7, 92te t ran it ro 22, 5, 7, 92te t razab icyc lo 4, 3, 0 ( 221. 为 分 解 表 观 活 化 能 E 4 kJ m o l 相 关 系 数 为 ?[ . no nano ne J C h ine se Jo u rna l o f E xp lo sive s and ) 0. 9991。() , 2003, 26 4: 33236.P rop e llan t s 同理, 由O zaw a 方程: 盛涤伦, 马凤娥, 吕巧丽, 等. 新型安全钝感起爆药高氯 3 9 E()( ) ( )() 0. 4567 2 酸. 四 氨. 双 52硝 基 四 唑] 合 钴 ? BN C P [ J . R 1 ) ( d lg Β() ( ) 火工品, 2000 2: 56. d = -T
SH EN G D i2lun , M A F eng2e, L üQ iao 2li, e t a l. A 计 算 出 BN C P的 热 分 解 表 观 活 化 能 为 ( 2522no ve l safe in sen sit ive in it ia t ing exp lo sive b isn it ro ( ) 187. 5 kJ m o l 相关系数为 0. 9997, B T F 的热分解 ?) ( ) 222? H te t razo la to N 2 te t raam ine co ba lt p e rcho ra te ( ) 表观活化能为 221. 3 相关系数为 0. 9193, ?kJ m o l () ( ) [ . , 2000 2 :BN C P J In it ia to r s and P y ro tech n ic s ( 2K 的热分解表观活化能为 220. 3 ?相关HN SkJ m o l 56. )系数为0. 9992。方程计算得到的热O zaw a BN C P 4 张蕊, 冯长根, 姚朴, 等. 钝感起爆药BN C P 的热安全 分 性 [.J () 火炸药学报, 2003, 26 2: 66269. 解表观活化能比 方程的大 9. 2 对 ?, K issin ge r kJ m o l, 2, , .ZHA N G R u iF EN G C h anggengYA O P u e t a l 于和 2K , 两种方法得到的热分解表观活B T F HN S T h e rm a l safe ty o f in sen sit ive in it ia t ing exp lo sive
化能非常一致。BN C P [ J . C h ine se Jo u rna l o f E xp lo sive s and
() 3 结 论,2003, 26 2: 66269. P rop e llan t s
2282903, 25 M IL E M ilita ry Sp ec if ica t io n E xp lo sive HN S
( )1 K [ . 1994 212230.K issin ge r 法计算出的BN C P 热分解表观 S
楚士晋. 炸药热分析 [. 北京: 科学出版社, 1994.M 6 178. 活 化能为 3 kJ m o l, 比B T F 和 HN S2K 分别低 ? . 2K issinge r H ER eac t io n k ine t ic s o n d iffe ren t ia l th e 7 46. 4 kJ ?m o l 和 43. 1 kJ ?m o l。O zaw a 法 计 算 出 的
( ) 2[ . , 1957, 29 11 : 1702rm a l ana ly sis J A na l C h em 分解表观活化能分别为187. 5 比?, BN C P kJ m o lB T
7706. F胡荣祖, 史启祯. 热分析动力学 [. 北京: 科学出版 M 8 和2K 分别低 33. 8 ?和 32. 8 ?。 HN SkJ m o l kJ m o l社, 2001.
( ) 2在 100 ?条件下, 0. 5 持续 48 放 g BN C P h . 2O zaw a TA new m e tho d o f ana lyzing th e rm o g rav i 9 气量为0. 20, 表明在常温下具有良好的mL BN C P ( ) [ . , 1965, 38 1 :m a t r ic da ta J B u ll ch em Sc i J P n 热 188121886.
安定性。
() 3在 10 ??升温速率下, 无明显的 m in BN C P
熔化, 其分解峰温为 289. 6 ?, 完全反应后所剩质量
转载请注明出处范文大全网 » 高氯酸羟胺热分解动力学