范文一:隧道工程测量的步骤
隧道工程测量的步骤———送给初入隧道施工测量之门的同僚
当你接到隧道施工工程,无论是被派遣或私人老板雇佣,第一、要先做隧道进口和出口控制网,为保证进出口坐标系统一致,需要以导线形式或三角锁形式联测,当然GPS更好。如果有支洞,斜井,不管几个均需要将进口的控制点纳入整个控制网中,观测、平差计算。其目的是为了保证所有控制点坐标、高程一致,同精度,防止隧道贯通出现偏差。如果设计单位在这些部位提供的有平面、高程控制网点,你一定要进行复核测量,以免误用而造成不可挽回的经济损失。如果工程是国家正规工程,你应在施测前或过程中上报监理一份布设控制网的设计报告,在结束的时候报一份技术总结供审批。没有要求的或工程较小,这两项可合并一起,在建立控制网后写出报批。
第二、应根据控制网做好贯通误差估算,贯通误差限差要求请见相关规范。如果贯通误差大于规范要求,需要对控制网进行优化,以满足规范要求。
第三、当控制网建立后(包括控制网点复核测量合限),即可按照设计图纸提供的坐标,将隧道轴线包括支洞、斜井轴线方向控制点在实地稳固标定,位置应选在开挖区以外的适当位置,防止被破坏,但又不要离开挖区过远,使用不便。上述工作完成后,即可进行隧道进出口包括支洞,斜井进口的洞脸开挖放样。开口线的测定应依照图纸,并换算出与控制轴线点的相互关系,用全站仪采用逐近法直接测定。同时应测定洞脸开挖前的原始断面图或测绘不小于1/200的地形图,有地形图软件的话,在室内切出断面图,以供工程量计算之用(如果测地形图,需征得现场监理同意后方可或要求他旁站)。注意:应根据图纸核对洞脸实际里程是否正确。防止造成超欠挖。如果无免棱镜功能全站仪,在洞脸开完逐渐向下的过程中,应将开挖后的断面逐渐测下来,随时检查是否存在欠挖部位,也免得开挖完成后,测绘断面困难,
第四、当洞脸形成后,根据图纸,及施工组织设计和措施,将隧道的轮廓开挖线在洞脸上标出,其轮廓点间距不应大于50cm。为了不至于欠挖,轮廓点可大于半径5cm放样,一般宁超不欠,但不可过大免得形成过量超挖。
第五、当进洞之时,应根据隧道体型断面(单圆心还是多圆心)、隧道平面线型,用程序型计算器编制计算程序,以便放样定点计算。隧道的轮廓点的测定宜用带激光的全站仪直接在开挖掌子面测定坐标、高程,输入计算器计算后根据计算结果改正位置,以逐近法确定,一般不超过2次即可。
第六、洞内控制应随着隧道的掘进延伸而布置,其布置形式以导线为好。导线点宜布置在隧道的一侧,导线点间距应不大于200m。对于3公里以上的隧道等级不低于四等。放样控制点距开挖面距离不大于50m为宜。如果隧道比较短且平面线性为直线,可采用激光准直仪比较方便。对于激光准直仪的安装调试请参考相关资料,不在赘述。
第七、在进行隧道开挖轮廓点放样中,应随时检查凸出部位的欠挖,并标出范围,供处理,以免过后处理困难。
第八、根据设计或监理要求,及时测定隧道开挖断面图,断面一般5到10m一条,测量方法可用带激光的全站仪,置仪于适宜控制点上,直接进行断面测量。不需要在每个断面上置仪来进行测量。
第九、 编程技巧:隧道周边轮廓点的放样,是通过全站仪测定坐标、高程数据的采集,然后输入计算器进行计算,来获得放样点在隧道的空间位置,从而判断是否满足图纸和自己的要求。放样点的坐标有两种形式采用, 1、利用图纸设计平面坐标即大地坐标和高程,2、相对坐标和高程,即以隧道前进方向中线为X(里程),隧道中线两侧为Y,Y值为正在中线右侧,为负在中线左侧,洞口底部设计高程为零点。两种坐标获得的目的只有一个,那就是通过计算求得测点在隧道的空间位置量,即该点的里程、高程数值以及该点与圆心或中线的关系数值。第一种方法计算量较大需要在程序中通过计算换算成里程,没有第二种直观,但程序编制需要点功夫,并要求将设站置仪器点换算成隧道相对坐标进行。编程应根据自己的喜好或习惯来编制,
可借用他人资源来改编适合于自己的,建议不要照搬,拿过来就用,别人的不一定适合。
在编程过程中,一般对隧道周边轮廓点的空间位置计算是要参考设计的圆心高程与开挖边线的关系进行的,无论单圆心还是多圆心,同时还要考虑隧道是否设计有的纵向坡度,圆心的高程是随纵向坡度及里程延伸而变化的。如果隧道平面是曲线型,在程序编制中还要将曲线计算部分编制进去。一般隧道如果是过水作用不设置缓和曲线,是交通隧道特别是高速公路和铁路会遇到缓和曲线的,程序编制时应引起注意。
对于曲线隧道部分的编程,可以根据曲线半径的大小来设计,当半径较大的时候,可以采用折线的形式进行编制来简化程序,其折线长度的选择只有在玄狐差不影响开挖放样精度的时候采用。
第十、为什么需要求得测点(轮廓放样点)的里程或称X坐标,因为隧道在掘进的时候,掌子面不会是一个平面,会有凸凹,当隧道纵向有坡度的时候,凸凹的部位(指轮廓线周边)的里程不一样,其里程位置的开挖高程在断面位置是不一样的,目的就是解决这一问题。测得的高程目的就是通过计算对照相对这一测点里程的设计高程在该处断面的轮廓点位置是否吻合,来改正测点的轮廓点位置至正确。
当然,在隧道无纵向坡度的时候可简化计算过程与程序。
上述十点拙见,是根据工作经验列出,如果需要详尽的学习,建议你还是读一下相关书籍和技术规范为好,以免被误导。
范文二:隧道施工测量方法及步骤
隧道施工测量方法及步骤
一、 洞口段施工:1、边仰坡开挖:全站仪测量放样,利用挖掘机自上而下逐段开挖,不得掏底开挖或上下重叠开挖,清除洞口与上方有可能滑塌的表土,灌木及山坡危石等,石质地层仰坡开挖需要爆破时,应以浅眼松动爆破为主。局部也可人工配合修整,开挖时应随时检查边坡和仰坡,如有滑动、开裂等现象,应适当放缓坡度。2、成洞面支护:仰坡刷坡完成后,及时用坡度板检查坡度,待坡度检查合格后,及时打设系统锚杆,并将锚杆头外露,挂设金属扩张网与锚杆头焊接成整体。挂网完成后立即喷射混凝土,并反复喷射,直到达到设计厚度为止。3、截水沟施工: 在距仰坡坡口5米处开挖截水沟,截水沟开挖以机械为主,人工配合修整,修整完后,立即砌筑7.5#浆砌片石,并用砂浆抹面。
二、辅助施工:1、长管棚:套拱施工:施工放样,模板安装、钢筋绑扎、导向管放样,127导向管安装,砼浇注。管棚施工:钢管规格:热扎无缝钢管¢108㎜,壁厚6㎜,节长3米,6米;n 管距:环向间距50㎝;n 倾角:仰角1°(实际施工按2°施工),方向与线路中线平行;n 钢管施工误差:径向不大于20㎝;n 隧道纵向同一截面内接头数不大于50%,相邻钢管的接头至少错开1米。A 管棚施工方法: 测量人员准确放样,标出洞中心线及拱顶标高,开挖预留核心土作为管棚施工的工作平台,开挖进尺为2.5米,开挖结束后,人工两边对称开挖(品字型)工作平台,
台阶宽度1.5米,高度2.0米,作为施工套拱和管棚施钻的平台。管棚应按设计位置施工,应先打有孔钢花管,注浆后在打无孔钢花管,无孔管可作为检查管,检查注浆质量,钻机立轴方向必须准确控制,以保证孔口的孔向正确,每钻完一孔便顶进一根钢管,钻进中应经常采用测斜仪量测钢管钻进的偏斜度,发现偏斜超过设计要求,及时纠正。钢管接头采用丝扣连接,丝扣长15㎝,为使钢管接头错开,编号为奇数的第一节管采用3米钢管,编号为偶数的第一节管采用6米钢管,以后每节均采用6米长钢管.B 管棚施工机械:n 钻孔机械:配备XY-28-300电动钻机,钻进并顶进长管棚;n 注浆机械:BW-250/50型注浆泵2台;C 注浆参数:n 采用水泥-水玻璃浆液。水泥浆与水玻璃体积比1:0.5;水泥浆水灰比1:1;水玻璃浓度35波美度;水玻璃模数2.4;注浆压力初压0.5~1.0MPA;终压2.0MPA。2、小导管 A 超前小导管采用外径42㎜、壁厚3.5㎜的热扎无缝钢管,钢管前端呈尖锥状,尾部焊上¢6加劲箍,管壁四周钻8㎜压浆孔,但尾部有1米不设压浆孔,超前小导管施工时,钢管与衬砌中心线平行以10°~30°外插角打入拱部围岩,钢管环向间距20~50㎝。每打完一排钢管后,应立即喷浆封闭开挖面,然后注浆.注浆后,架设钢拱架,初期支护完成后,每隔(2~3米,试图纸而定)再另打一排钢管,超前小导管搭接长度一般为1.0米。B 注浆参数:n 水泥浆与水玻璃体积比:1:0.5;n 水泥浆水灰比1:1;n 水玻璃浓度35波美度;水玻璃模数2.4;n 注浆压力0.5~1.0MPA;
必要时在孔口设置止浆塞。 3、超前锚杆:外插角必须大于14度,注浆饱满,搭接长度不小于1米。三、 预埋件施工:预埋件按设计尺寸采用木版作成设计形状,安装于二衬魔板台车中,且位置准确(误差±50CM),固定牢固不得晃动,有管的必须中间穿铁丝通过。四、调平层施工模板安装的要求,在调平层两侧预先标定的位置上安装模板。侧模采用[10#槽钢模板,顶面标高应与相应里程的路面标高一致,允许偏差±2mm,用水准测量调整、确定标高。模板每隔一定距离内外固定,保证不位移,模板的接头应紧密平顺,不得有离缝、歪斜和不平整等现象,模板接头及底部均不得漏浆。砼灌注前,底层砼面上必须清洗干净。当砼运达施工地点时,直接倒向安装好模的路槽内,并用人工找补均匀。摊铺时应考虑砼震捣后的沉降量。虚高可高出10%,使震实后的面层标高与设计相符。
范文三:隧道断面测量分析处理简明步骤
隧道断面测量分析处理简明步骤
利用GSP 软件进行隧道断面测量分析,非常简单和快速。主要步骤:
1、新建道路中线平纵项目,输入线路平面曲线和纵坡设计数据,同时也要输入里程断链数据,然后查询一个点的坐标看看是否输入正确;保并存项目文件;
2、现场测量隧道断面,准备好断面测量数据,并保存到文件中;其格式应符合GSP 的约定的格式要求;
3、新建隧道断面测量分析项目,在【设置】页面中单击〖选择中线数据〗按钮,选择保存好的线路中线数据项目文件;
4、在【设计断面】页面中录入隧道设计断面;并选择“直接使用”选项;保存项目文件;
5、在【浏览】页面左侧文件选择栏中,双击你的实测断面数据;单击〖分解〗按钮,可以看见分解出来的实测断面;
在分解之前,你也可以选择“套合设计断面”,将可以看到实测断面与设计断面套合的图形;
6、选择你要查看、编辑和分析的断面图标,从鼠标右键中选择“断面编辑”、“断面分析”、“输出到CAD”等,可以执行相应的功能了。
断面编辑:编辑断面中的部分点,并自动切换到【断面编辑】页面;
断面分析:对实测断面的超欠挖值和超欠挖面积进行计算,并自动切换到【分析】页面;
输出到CAD :把选择的断面分析后输出到AutoCAD 中。
7、如果此时没有错误或问题,你可以选择你要输出的断面(图标打上√),从鼠标右键菜单中的“全部输出到CAD”,GSP 将把你选择的断面图形批量输出到AutoCAD 中(DXF 文件或直接绘图),你可以更加详细的观看、处理这些断面分析成果。
8、在【分析】页面中,主要区域显示了实测断面与设计断面套合分析的图形,右侧上部是实测断面数据表格,里面计算出了实测断面的超欠挖值;右侧下部是以下选项和超前挖值和面积计算结果。
选择“跟踪最近实测断面点”选项,鼠标在分析图上移动时,实测断面线上自动绘制一个小圆圈,表示当前的实测断面点;选择“图形数据同步显示”选项,鼠标在分析图上移动时,右边的断面数据表格中自动定位到当前的断面点上,你实时可以查看到断面点的超欠挖值。
9、如果在【分析】页面中看到的超欠挖面积很大,那说明你的断面数据的顺序反过来了,可以这样处理:在【浏览】页面中选择断面图标,从鼠标右键菜单中选择“断面编辑”,则在
【断面编辑】页面中的【排序】页面,单击〖逆转〗按钮,然后再单击〖分析〗按钮,自动切换到【分析】页面,这时的超欠挖面积就对了。
范文四:隧道的贯通测量
隧道的贯通测量 及其测量误差控制
摘 要:合理选择隧道贯通测量方案,准确进行测量误差分析,能使贯通精度既达到要求,又取得较大的经济效益。
关键词:隧道的贯通测量;控制;近井点;误差分析。 一、概述
甬台温高速公路瑞安段三都岭为左右分离式隧道,隧道单幅长2km多,由铁一局及福建路桥二个施工单位共同施工,该隧道的顺利贯通对甬台温高速瑞安段工程的建设意义重大。本人有幸多次与铁道部第一工程局的同仁们共同对该隧道的贯通进行施工测量及平差计算,取得了对隧道贯通测量的新认识。隧道贯通测量内容包括近井点的设置、洞内施工测量、贯通误差的测定及调整等。 二、隧道的贯通测量 (一)近井点的设置 隧道洞中施工测量时,须将洞外的导线点延伸入洞,此时要在隧道口设置一个测量的联系点,即近井点。近井点一般选择在便于施工放样且基础稳固的洞口附近。
近井点的设置实际上就是洞外与洞内的联系测量,其方法有多种,然而在一般隧道的开挖中,实际上多采用如下图所示的直伸导线法,利用检测核过的设计已知导线点,分别在N1、N2上设站,以各自洞口附近的高级点(如图N3、N4)为后视方向,测定洞外与洞内的联结点A、B(近井点)。 (图略)
(二)洞内施工测量 1、中线测量
洞内贯通横向测分为导线测量与中线测量,由于三都岭隧道小于4km,采用中线测量法较为简单。为确保其测量精度,隧道中线测量普遍采用光电测距仪测量。中线测量分为正式中线和临时中线测设。正式中线点约100米左右一组(一般每组三个点),测设每一个正式中点后及时进行坐标复核,当隧道开挖过程和快要贯通时,对已经测过的正式中点从尾到近井点重新进行复核。 2、水准测量
洞内水准测量主要是用来掌握开挖和衬砌的高程,一般选在某一永久性中线点上,为方便施工,其点位也可选择在没有施工电缆的一侧,大约每100米左右加设正式水准点,使其在任何部位置镜时能直接后视水准点传递高程。正式水准点一般采用往返观测,使其闭合在已知水准点上。 三、隧道贯通误差计算分析
贯通误差是指贯通点在水平面的横向误差和竖直面上的纵向偏差。
(一)横向误差计算分析
横向误差通常只注重洞外控制测量与洞内中线测量误差的影响,但根据我们贯通测量经验,隧道口近井点的测量误差亦不能忽视,将近井点误差考虑进去,将会使贯通误差更合理。 1、隧道测量误差
当贯通误差为△时,根据误差等影响原则,地面控制测量、两相掘进的隧洞测量误差各为一个独立分量
m独,则有m独=±△√3 =±0.58△
根据4km以内隧道控制测量的贯通精度要求△值不大于50mm,将△值代入后得m独=±△√3 =±50√3=±29mm。即掘进隧道测量误差应≤29mm。 2、隧道贯通近井点联系误差
由于采用直伸导线,测边误差只影响贯通方向上的纵向误差,所以,仅可考虑在贯通方向所产生的测角误差 m井1,m井2。
根据测角误差的计算公式,可知联系误差对贯通水平方向上的影响为:m井1 =mβ1×S1/ρ,m井2 =mβ2×S2/ ρ
(1)在图1中,S1=AN1,S2=N2B, β1=∠AN1N3,β2=∠BN2N4)
根据误差传播理论,联系误差则为m井=√m井1+ m井2 (2)当进行近井点联系误差估算时,可令S1= S2 ,mβ1 =mβ2=mβ
根据洞口传递进洞方向的联接角的测角中误差一般应不大于2.5秒, 故取mβ=±2.5秒, ρ=206265
从表中可以看出,当放样摆站点离开挖点较远时,联接误差较大,反之则较小。
3、由上可知,掘进隧道测量误差应≤29mm,而将m井=6 .8mm(当S取0.4km时)与29mm相比较,显然6.8mm是不可忽略的量。故在进行三都岭隧道贯通测中,应将近井点联系误差考虑进去。而要使测量精度达到规范要求,考虑到地面测量的条件比地下好,故测量设计方案以提高地面精度来进行。
根据估算近井点联系误差为6.8mm,取其值1倍13.6mm为限差,则在进行地面控制测量,其误差对隧道贯通的影响m必需满足下式√292+292+13.62+m2≤50,则m≤±21.4mm
根据推算的m值的限差,这样我们就可以选择合理的控制网,使贯通精度既达到要求,又取得了大的经济效益。 根据这个思路,在三都岭隧道工程测量中,我们合理地选用了该隧道的贯通测量方案:加强地面控制的精度,减小洞内测量强度,这样既可以保证精度,又减小了整个测量的难度。 (二)贯通纵向高程误差
纵向高程误差来源为水准点测设误差,尤其是洞内水准点高程测设误差。通过对每一正式水准点往返闭合观测进行,往返观测的高差闭合差 fh=∑h往+∑h返。 当洞中正式水准点与洞口联系水准点复测时,若每站的高差为hi,每站的中误差均为m站,则A、B两点之间的高差h的中误差mh=√m站2+ m站2+……+ m站2
=±m站√n
在水准路线长度在5公里之内时,可按五等水准测量的精度要求施测,其水准测量高程差中误差≤±7.5 毫米/公里,线路闭合差为±30√R (R为测段长度)。
四、结束语
隧道顺利贯通是隧道施工的重中之重。在隧道开挖前,我们根据工程的精度要求,选择一个合理的隧道贯通测量方案,其间应充分考虑各种测量误差源对贯通误差的影响,在隧道开挖过程中及时对误差进行分析计算,尽量减少隧道的贯通误差,此将对工程的优良和经济效益起着非常重要的作用。
范文五:隧道的施工测量
4 隧道的施工测量及其放样
4.1 隧道掘进的方向、里程和高程测设
洞外平面和高程控制测量完成后,即可求得洞口点(各洞口至少有两个) 的坐标和高程,根据设计参数计算洞内中线点的设计坐标和高程。坐标反算得到测设数据,即洞内中线点与洞口控制点之间的距离、角度和高差关系。测设洞内中线点位。
(1) 洞口掘进方向标定
隧道贯通的横向误差主要由隧道中线方向的测设精度所决定,而进洞时的初始方向尤为重要。因此,在隧道洞口,要埋设若干个固定点,将中线方向标定于地面,作 为开始掘进及以后与洞内控制点联测的依据
(2)洞内中线和腰线的测设
中线测设:根据隧道洞口中线控制桩和中线方向桩,在洞口开挖面上测设开挖中线,并逐步往洞内引测中线上的里程桩。一般,当隧道每掘进20m 要埋没一个中线里程桩。
中线桩可以埋设在隧道的底部或顶部,
腰线测设:在隧道施工中,为了控制施工的标高和隧道横断面的放样,在隧道岩壁上,每隔一定距离(5-10m)测设出比洞底设计地坪高出1m 的标高线,称为 腰线。腰线的高程由引入洞内的施工水准点进行测设。由于隧道的纵断面有一定的设计坡度,因此,腰线的高程按设计坡度随中线的里程而变化,它与隧道的设计地 坪高程线是平行的。
(3)掘进方向指示
隧道的开挖掘进过程中,洞内工作面狭小,光线暗淡。因此,在隧道掘进的定向工作中,经常使用激光准直经纬仪或激光指向仪,以指示中线和腰线方向。它具有直 观、对其他工序影响小、便于实现自动控制等优点。例如,采用机械化掘进设备,用固定在一定位置上的激光指向仪,配以装在掘进机上的光电接收靶,当掘进机向 前推进中,方向如果偏离了指向仪发出的激光束,则光电接收靶会自动指出偏移方向及偏移值,为掘进机提供自动控制的信息。
4.2洞口测量
洞门测量包括出洞洞门测量和进洞洞门测量。测量方法和步骤都是一样的。一般平面采用导线直传的方法,测定洞门左右两边的坐标,再把这两个坐标进行平均,就可以得到洞门中心的坐标。高程测量则采用高程导入的方法进行测量,并测量洞门顶和底的高程。洞门测量不但要测定洞门中心坐标,还要测量洞门的水平和垂直直径
4.3洞内施工导线和水准测量
(1)洞内导线测量
测设隧道中线时,通常每掘进20m 埋设一个中线桩。由于定线误差,所有中线桩不可能严格位于设计位置上。所以,隧道每掘进至一定长度(直线隧道约每隔 100m左右,曲线隧道按通视条件尽可能放长) 布设一个导线点,也可以利用埋设的中线桩作为导线点,组成洞内施工导线。导线的转折角采用DJ2级经纬仪至 少观测两个测回。距离用经过检定的钢尺或光电测距仪测定。洞内施工导线只能布置成支导线的形式,并随着隧道的掘进逐渐延伸。支导线缺少检核条件,观测应特 别注意,转折角应观测左角和右角,边长应往返测量。根据导线点的坐标来检查和调整中线校位置。随着隧道的掘进,导线测量必须及时跟上,以确保贯通精度。
(2)洞内水准测量
用洞内水准测量控制隧道施工的高程。隧道向前掘进,每隔;Om 应设置一个洞内水准点,并据此测设腰线。通常情况下、可利用导线点作为水准点,也可将水准点 埋设在洞顶或洞壁上,但都应力求稳固和便于观测。洞内水准线路也是支水准线路,除应往返观测外,还须经常进行复测。
4.4盾构施工测量
盾构法是隧道施工采用的一项综合性施工技术,它是将隧道的定向掘进、运输、衬砌、安装等各工种组合成一体的施工方法。其工作深度可以很深,不受地面建筑和 交通的影响,机械化和自动化程度很高,是一种先进的土层隧道施工方法,广泛用于城市地下铁道、越江隧道等工程的施工中。
盾构的标准外形是圆筒形,也有矩形、半圆形等与隧道断面相近的特殊形状。切口环是盾构掘进的前沿部分,利用沿盾构圆环四周均匀布置的推进千斤顶,顶住己拼装完成的衬砌管片(钢筋混凝土预制) ,使盾构向前推进。
盾构施工测量主要是控制盾构的位置和推进方向。利用洞内导线点测定盾构的位置(当前空间位置和轴线方向.)1用激光经纬仪或激光定向仪指示推进方向,用千斤顶编组施以不同的推力,进行纠偏,即调整盾构的位置和推进方向。
盾构机进出洞基座放样是对安放盾构机的基座和基座上的导向轨进行放样,从而使盾构机达到理想的进出洞姿态。一般基座放样使盾构机切口与洞门形成同心圆的状态,并使盾构机中轴线的坡度和方位与设计的一致。如果进、出洞段平面是曲线,一般采用割线进、出洞。如果进、出洞段高程是竖圆曲线则放样坡度要根据现场情况计算确定。其它现场的特殊情况下盾构基座放样均需根据现场情况确定。目的都是确保盾构机在加固区内姿态合理、正常。
4.4 井下控制测量
井下控制测量可包括井下平面控制测量和高程控制测量。
(1)井下平面控制测量
a 、在盾构出洞后向前掘进时,应布设施工导线用以进行放样并指引盾构掘进。施工导线边长为25—50m 。导线点应设置于洞壁一侧,并及时测定盾构观测台的坐标,为盾构施工测量做准备。当盾构掘进100—200m 时,为了检查隧道轴线与设计轴线是否相符合,必须选择部分施工导线点敷设边长较长(50—100m )精度要求较高的基本导线。并且,为了保证隧道贯通的精度,在基本导线中选取敷设边长较长(200—500m )精度要求更高主要导线点,提高测量精度,确保隧道贯通。施工控制导线的测量包括基本导线和主要导线的测量工作。因受到隧道实际的空间限制,施工导线一般布设成支导线的形式。
b 、观测采用左右角各三个测回进行观测,左右角平均值之和与360°的较差小于4″。边长往返测各两测回,一测回三次读数的较差小于3mm ,测回间平均值较差小于3mm ,往返平均值较差小于5mm 。气象数据每条边在一端测定一次。测距边只进行气压、温度等气象改正和倾斜改正,不进行高程归化和投影改正。
c 、对于距离大于2KM 的隧道地下平面控制网可采用双导线等图形强度更高的形式。
(2)井下高程控制测量
地下水准测量包括地下施工水准测量和地下控制水准测量,起算于竖井传递的井下固定点,地下水准点可利用地下导线点测量标志。
井下水准点一般以100m 左右埋设固定水准点一点,水准尺必须用装气泡的水准尺,以便减少水准尺的倾斜而造成系统误差。
井下水准测量按城市Ⅱ等水准操作及工程测量GB50026-93规范执行。应采用往返测,往返固定点之间高差≤3mm ,全线往返≤3mm ×n1/2 。(n 为测站数)
4.5贯通测量
为保证隧道后阶段盾构推进贯通,应在贯通前进行专门的贯通测量。其内容应包括:地面控制网复测、接收井门洞中心位置测定、竖井联系测量和井下导线测量。其中利用坐标法测定洞门中心,其它几项采用方法与前几节相同。
4.6竣工测量
(1)盾构隧道贯通后进行贯通误差测量,贯通误差测量是在接收井的贯通面设置贯通相遇点,利用接收井传递下来的地下控制点和指导贯通的地下控制点分别测定贯通相遇点三维坐标,贯通误差归化到线路纵向、横向和高程的方向上。
(2)隧道贯通后进行贯通隧道内导线的附合路线测量,并重新平差作为以
后测量依据。
(3)竣工测量内容包括隧道横向偏差值、高程偏差值、水平直径和竖直直径等。
(4)竣工测量完成后,按监理工程师要求填写测量成果数据。
(5)对竣工测量数据妥善保存,最后作为竣工资料归档。
4.7监控量测
量测内容包括地表和建筑物沉降、隧道隆陷等,并及时反馈量测数据,实施信息化施工,以控制地层变形,保护地表建筑物和支护结构的稳定。整个监控量测均应围绕着“安全、经济、快速”的中心来运行。其运行的状态与质量直接关系着工程的安全与质量,施工中将认真对待。
(1)变形监测控制网的布设
a. 变形监测控制网的起算点或终点要有稳定的点位,应布设在牢靠的非变形区。为了减少观测点误差的累积,距观测区不能太远。
b. 为便于迅速获得观测成果,变形监测控制网的图形结构应尽可能的简单。 c. 在确保变形监测控制网具有足够精度的条件下,控制网应尽量布设一次全面网,只有在特殊条件下才允许分层控制。
d. 控制网设计时,应尽量采用先进技术,尽可能多地获取建筑物变形数据,特别是绝对位移数据和时间信息。控制点应便于长期保存。
e. 变形监测控制网应与建筑施工采用相同的坐标系统。
根据以上布网原则,在整个监测区域布设如上变形监测控制网,按路线联测各控制点,平差后算出各点高程,作为测量时的水准基准点。在监测工期内应对控制网定期复核。
(2)工作基点的布设与检验
工作基准点是直接用于对变形观测点进行观测的控制点,其埋设位置既要考虑到便于观测,又要考虑它的稳定性,因此,本工程工作基准点拟每150米设一个工作基准点。为检测工作基准点稳定性,根据施工进度情况,拟每二周检测一次,检测时按国家二等水准规范观测的技术要求进行往返观测。
(3)沉降监测点的设置
a, 地表沉降点布设
在现场布置平行于盾构中心线的沉降监测点和垂直于盾构中心线的沉降监测点。平行于盾构中心线的地面监测点主要用于观测盾构施工时对地面的影响程度;垂直于盾构中心线的地面监测点主要用于观测盾构施工时对地面的影响范围。地面沉降监测横断面的间距布置原则见下表。
地面沉降监测横断面间距布置原则表
b, 地下管线沉降点的布设 在盾构穿越地下管线时要对地下管线进行跟踪监测。在隧道影响范围内的地下管线沿长度方向每5m 布设一个监测点,对重要管道在有条件允许下开挖布设直接监测点,测点布设数量根据实际情况而定。在管线密集区域需加密测点。测点编号根据管线单位要求采编,如:煤气用M ,电力用D ,上水用S ,市话用T 等。
c, 建(构)筑物沉降点的布设
为了及时反映隧道推进区上方建筑物变形情况,需在隧道轴线两侧20米范围内建(构)筑物上设置沉降监测点,测点数量根据现场实际需要而定。编号为F01至FN 。测点标志采用墙面标志,布设时,采用冲击钻成孔,然后用水泥将道钉封牢, 具体测点数量视现场情况而定。对于沿线中的重要建筑物需要进行重点监测,即测点进行加密处理。本标段盾构穿越建筑物时对沿途的建筑物会有一定的影响,在影响范围内的建筑物的外墙角、门窗边角、建筑物等突出部位布设沉降观测点,观测建筑物在盾构穿越前后所发生的变化。
测点布设将根据建筑物的基础形式、年代远近酌情而定。在施工前在隧道沿线巡视、观察,若发现先天裂缝,应采取贴石膏饼的方法观测裂缝的后期变化,必要时拍照存档。