关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
关于小学数学课堂教学评价的构想
素质教育要求教师充分挖掘每个学生的潜能,以促进学生素质的全面提高。为此,在小学数学课堂教学中 就要落实“掌握知识、发展智能、陶冶情操”的三维教学目标,使学生成为既有丰富的知识,又有高尚人格的 主体性的一代新人。这里的所谓人格,是指学生的能力特征和品德特征的总和。这不仅是小学数学课堂教学的 奋斗目标,也是督导评估小学数学课堂教学的依据。现就小学数学课堂教学评价问题,构想如下:
一、对小学数学课堂教学总体评价的构想
1.教学指导思想是否符合现代教学论原则;通过教与学双边活动是否充分调动全体学生的认识过程、情感 过程和意志过程。以促进每个学生掌握知识,培养和提高各种数学能力,完善人格,获得全面的发展。
2.教学目的要求和教学内容的确定是否有利于全体学生比较系统地掌握小学数学最佳知识结构。即,那些 最基本、最具有代表性的概念、法则、规律、公式和数学思想组成的知识系统,并且是按照小学生身心发展规 律,能被小学生所接受、理解、难易适度的知识系统。
3.教学过程的设计是否有利于学生对知识的理解、技能的形成、潜在智能的开发和提高;是否通过“获得 知识”和“应用知识”两种途径培养和形成学生良好的观察能力、思维能力、分析和解决问题的能力,以及动 手操作和数学语言表达能力。
4.在课堂教学中是否既突出“面向每一个学生,面向学生的每个方面”的落实,又兼顾“因材施教”的推 进。
5.课堂教学是否较好地体现了“认知结构”、“教材结构”、“教学结构”三者和谐一致的整体关系。
6.全体学生在求知的全过程中,兴趣、情感、信念、意志、性格等非智力因素投入的质量与程度如何,发 展趋向是否有利于学生形成良好的心理品质。
7.进行“知识”与“能力”方面的课时教学效果的量化测试和“智能”与“情意”方面相应的课外跟踪考 查结合。
二、小学数学课堂教学“三维教学目标”评价的构想。
(一)对“掌握知识”的评价构想。
实施素质教育,并不是要改变知识及其应用在课堂教学中的核心地位,并非要降低小学数学课堂教学的质 量,而是对小学数学课堂教学质量所涉及的内容提出了更高、更加广泛的要求。因此,在教学中应该把知识的 形成过程放在教学的首位,使学生经历真正的认知过程,获得具有生命力的有用的知识,掌握具有迁移的生动 的活泼的知识结构。那么,应该如何评价小学数学课“掌握知识”的教学,笔者认为应包括以下内容:
1.“感知、理解新知”的评价内容。
①为导入新知所提供的感知材料是否充实;
②感知材料的选择是否包罗新知的本质属性;
③感知阶段的诱导是否便于学生尽快进入新知的最近发现区,展开求知探索;
④新、旧知识交接点的确定,是否便于快速促成学生认知的正迁移,教师的点拨是否有助于激起学生“短 兵相接”的思维交锋,顺利完成认知的“同化”或“顺应”;
⑤教学辅助手段的使用,是否有利于学生省时优质地发现和理解新知的本质。
2.“抽象、概括新知”的评价内容。
①思维阶梯的铺设是否有助于学生在揭示新知本质的求知过程中,展开高效的观察与比较、分析与综合、 判断与推理、抽象与概括。
②学生在归纳总结新知的过程中是否经过了一个以具体形象思维为支柱,向抽象逻辑思维过渡,又将已理 解的抽象概念具体化的认知往返历程。
③学生对已概括的新知理解得是否正确、全面、深入;学生对新知本质抽象概括得是否正确、全面、深入 浅出,表述具体严谨;是否达到了课时教学规定的教学目标。
④学生在探求、获取新知中个性意识倾向性作用的发挥如何,全员参与的竞争质量与程度怎样。
⑤教师指导学生求知获取的“投入”与学生学会求知方法,得到收获的“产出”是否成正比。
(二)对“发展能力”的评价构想。
能力的发展只能在掌握知识的过程中获得,离开知识,能力就成了空中楼阁。“发展能力一定要结合知识 的传授过程去进行,知识有其能力价值,它凝聚在知识之中,不思则暗,深思则宽,不着重分析挖掘,不在知 识传授过程中充分发挥,就会落空。”发展能力必须结合知识体系有目的、有计划,有序列,有层次地由低级 向高级逐步提高。练,是形成和发展能力的主要途径。因此,就小学数学综合课“发展能力”的评价而言,应 包括下列内容:
1.对课堂“半独立性练习”层次的评价内容。
①给出的题目是否属于紧扣新知要点的基本型题目;是否便于全体学生直接运用新知,起到巩固理解,强 化记忆的作用。
②教师在指导学生运用新知的过程中,是否立足于学生主动积极地解决问题,以思维能力的训练为核心, 突出基本技能的形成,“扶”与“放”适度,不包办代替学生对新知的再现。
③学生运用新知解答基本型题目的技能和叙述算理,或法则或解题思路的语言表达能力是否达到规定的教 学目标。
④教师在本阶段的课堂小结是否切中由学生板演和课堂巡视所反馈问题的要害;“结语”是否有助于学生 对新知要点的再现和发展。
2.对课堂“独立性练习”层次的评价内容。
①本阶段习题设计是否由三类不同要求的题构成;这些题目的编排是否便于培养和提高学生独立运用知识 解决问题的能力。三类题目的要求如下:
低档题:比基本型题目稍有变化,其目的是让学生独立运用新知解题形成技能,加深对新知的理解和记忆 。
中档题:以新知为主体的综合型题目,题目的编排既突出适度的综合性,又带有一定的思考性色彩,用以 培养和训练学生解题的综合能力和灵活性。
高档题:思考性较强,略有难度的题目。这类题目不超越学生的知识范围和思维能力的限制,用以解决“ 吃不饱”学生的心理需求和“吃得饱”学生竞争意识的激励,推进学生的求知欲和好胜心。
②在本阶段中, 教师是否给予学生充足的独立练习时间(区间为10至15分钟);是否较好地完成本阶段课 时教学任务,达到规定的教学目标。
3.对“独立练习交流与课堂总结”层次的评价内容。
①教师在组织学生进行独立练习交流中,是否为学生创设了宽松、和谐、自信、民主的课堂氛围。
②教师对学生的解题交流与评定是否立足于培养学生思维的求异性、广阔性、创造性;是否致力于培养学 生勇于探索、不断进取、一丝不苟、精益求精的学习品质。
③师生合作的课堂总结是否提纲挈领,简明扼要,便于学生回顾求知过程,掌握新知要点,获得求知启迪 。
(三)对“陶冶情操”的评价构想。
人的智力商数是先天已有的,而情意商数却是后天的培养和努力的结果。科学界已提出:一个人的“智商 ”只占其成功要素的20%,真正决定人类智慧的不是“智商”,而是“情商”。因此,一个具有主体性的人, 其核心素质是高尚的人格。通过小学数学课堂教学去陶冶学生应具备的道德情操、科学品质,已是当务之急。 为此,学生在求知过程中情意因素投入的质量与程度,应当作为评价教师课堂教学水平的一项重要内容。应该 评价教师在课堂教学中,是否把“陶冶情操”与“掌握知识”、“发展能力”同步进行,有机结合;是否做到 为此不遗余力,持之以恒。
总括起来说,学生的“认识过程”、“情感过程”和“意志过程”是紧密联系在一起的三个方面。学生从 事学习的正确认识是情感活动和意志活动的基础;良好的情感又能推进学生的认识和行动;而坚强的意志则能 使学生锲而不舍地提高认识和陶冶情操,去完成既定的学习任务。评价学生的“认识过程”,旨在界定学生揭 示事物的本质以及事物间的关系和规律的水平,为教师提供课堂教学改革的信息,有助于在教学中更好地发挥 教师的主导作用和学生的主体性,促进学生掌握知识,获得智力技能和开拓学生的创造能力。评价学生的“情 感过程”,在于使教师在课堂教学中更加重视学生良好的情感和情操的培养。评价学生的“意志过程”,使教 师明确良好的意志品质是学生成才的必备素质,在教学中加强砥砺学生意志的教学力度,使学生具有高尚的学 习目的,在求知中胜不骄,败不馁,知难勇进,百折不挠,不达目的决不罢休。
据上所述,小学数学课堂教学应该围绕学生的“认识过程”、“情感过程”和“意志过程”去评价教与学的双边活动
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
大学数学论文范文
数学与生活 自从懂事以来,数学就已进入了我们的生活,数学无处不在影响着我们的生活,指引着智慧的方向,陪伴我们度过学习与成长的各个阶段。
数学是一门给人智慧、让人聪明的学科,在数学的世界中,我们可以探索以前所不知道的神秘,在这个过程中我们变得睿智、变得聪明。
由于以前选择了文科,所以到大学才接触到危机分的知识,也开始了对微积分的探索,现在可以说是略知一、二了,在此期间间间的了解到微积分的美好,以及新引力的强大。
但学习微积分的过程是困难与艰辛的,与此同时,我也了解到——数学是一种寻求众所周知的公理法思想的方法,这种方法包括明确的表述出将要讨论的概念的含义,以及准确的表述出作为推理基础的公设。
具有极其严密的逻辑思维能力的人从这些定义和公设出发,推导出结论。
同时数学是一门需要创造性的科学,而数学的这些创造性的动力往往来自于生活。
反过来,数学的这些创造性地成果往往又作用于生活的各个方面。
例如,商业和金融事务、航海和历法的计算、桥梁、水坝、教堂和供电的建造、作战武器和工事的设计,以及许多人类的需要。
与此同时,数学又能对这些问题给出最完满的解决。
在我们高速发展的社会中,数学被当作普遍工具的事实更是毋庸置疑的。
在我们的日常生活中,微积分确确实实的存在着,只是我们缺少善于发现的精神而已。
比如说,我们在养花,而花瓶中水过多了,我们这时就要倒出部分水,这是上活中的公式就产生了,这个问题是:我们要将瓶子倾斜多少度时才能降水倒出一半来?这是微积分就派上用场了。
假设花瓶的纵截面是抛物线 Y=ax^2(a>0) 首先,先算出瓶子直立水满时的体积用一个积分就可以了,结果等于V=πh^2/(2a); 第二步,假设倾斜角为α,正好倒掉了一半的水,重新建立坐标系,令此时瓶的对称轴为y轴,垂直于瓶的对称轴的射线为x轴,然后将坐标系还原为常规正立的图形,此时瓶里水的横截面图像为抛物线和水面所在直线的公共部分,注意此时水面所在直线与x轴的倾角是刚好为题目所提到的倾斜角α(如原图所示,倾斜后的水平面此时与x轴平行,因此水面与瓶的对称轴的夹角为90-α,也即在新建坐标系下,水面所在直线与y轴的夹角也为90-α,因此它与x轴的夹角为α)。
所以可以设该直线方程为 y=tanα*x+b 假设直线与抛物线的交点为A(x0,y0),B(sqrt(h/a),h))(左A,右B)(B点的纵坐标显然等于瓶子的高度h),先利用B点坐标求出直线的截距b,然后联立直线与抛物线方程可以求的A点坐标;第三步,就是求此时瓶中水的体积,可以将图像分为两部分,一部分是直线y=y0与抛物线所交部分,第二部分是直线y=y0、直线y=tanα*x+b及抛物线y=ax^2(a>0)相交部分。
第一部分体积为V1=∫π*(x^2)dy=∫π*y/ady(积分上下限为0和y0); 第二部分体积为V2=∫π*((sqrt(y/a)-(y-b)/tanα)/2)^2dy(积分上下限为y0和h);因此根据: V1+V2=V/2=π*h^2/(4a)=∫π*y/ady(积分上下限为0和y0)+∫π*((sqrt(y/a)-(y-b)/tanα)/2)^2dy(积分上下限为y0和h)可以解得所求α值。
这就是数学于生活紧密联系在一起了,如果数学不能和生活紧密联系在一起,那么数学将变得空洞无力。
著名数学家罗素曾说:“数学如果正确看待他,则具有……至高无上的美——正像雕像的美,是一种冷而严肃的美,这种每部石头和我们的天性的微弱的美,这些煤没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。
一种精神上的喜悦,一种精神上的亢奋,一种高于人的意识的,这些是至善至美的标准,能够在诗里得到,也能够在数学里得到”这就表明伟大的人物因为有一双善于发现美的眼睛所以他看到了数学隐藏的魅力。
除了创造性和发现,想象也是可以使数学在我们思想中得到升华的。
学了很久的数学了,明卖弄百数学的源远流长于高深莫测,他引领着前进的道路。
Hankel,Hermann 说:数学沿着他自己的道路而无拘无束的前进着,这并不是因为他有什么不受法律约束之类的种种许可证,而是因为数学本来就具有一种由其本性所决定的并且与其存在相符合的自由无益的是数学在生活中独特而不可或缺,失去了数学科技水平将倒退。
这不是耸人听闻,这是对数学这门使人精密学科的肯定,这是不可置否的。
数学不是规律的发现者,因为它不是归纳。
数学也不是理论的缔造者,因为它不是假说。
但数学确实规律和假说的裁判和主宰者,因为规律和假说都要向数学表明自己的主张,然后等待数学的裁判。
如果没有数学的认可,则规律不能起作用,理论也不能解释。
(来自数学的文化) 数学是重要的,生活不能离开数学,国防发展与科技进步也不能离开数学。
在遥远的古代中国是引领世界的,因为那时的勤劳人民已发现了数学算筹、《九章算术》……这都是历史留下来的论据。
一个国家的强大离不开数学的精密计算。
21世纪的今天中国已傲然屹立于世界民族之林,为了使国际地位不断提升,我们必须坚定的发展研究数学。
小学数学小论文范文
呵呵,5年级学什么数学啊,也太简单了,没啥可写的,还论文。
呵呵,你们领导这不难为人吗? 随便找一个,网上很多 把循环小数化成分数的方法,可以用移动循环节的过程来推导,也可以用无限递缩等比数列的求和公式计 算得到。
下面我们运用猜想验证的方法来推导。
(一)化纯循环小数为分数 大家都知道:一个有限小数可以化成分母是10、100、1000 ……的分数。
那么,一个纯循环小数可以化成 分母是怎样的分数呢?我们先从简单的循环节是一位数字的纯循环小数开始。
如:@①、@②……化成分数时 ,它们的分母可以写成几呢? 想一想:可能是10吗?不可能。
因为1/10=0.1〈@①,3/10=0.3〉@②;可能是8吗?不可能。
因为1/ 8=0.125〉@①,3/8=0.375〉@②;那么,可能是几呢?因为1/10〈@①〈1/8,3/10〈@②〈3/8,所以分 母可能是9。
下面我们来验证一下自己的猜想:1/9=1÷9=0.111……=@①;3/9=1/3=1÷3=0.333……= @②。
计算结果说明我们的猜想是对的。
那么,所有循环节是一位数字的纯循环小数都可以写成分母是9的分数吗 ?让我们根据自己的猜想, 把@③、@④化成分数后再验证一下。
@③=4/9 验证:4/9=4÷9=0.444…… @④=6/9=2/3 验证:2/3=2÷3=0.666…… 经过上面的猜想和验证,我们可以得出这样的结论:循环节是一位数字的纯循环小数化成分数时,用一个 循环节组成的数作分子,用9 作分母;然后,能约分的再约分。
循环节是两位数字的纯循环小数怎样化成分数呢?如:@⑤、@⑥……化成分数时,它们的分母又可以写 成多少呢? 想一想:可能是100吗?不可能。
因为12/100=0.12〈@⑤,13/100=0.13〈@⑥。
可能是98吗?不可能。
因为12/98≈0.1224〉@⑤,13/98≈0.1327〉@⑥;可能是多少呢?因为12/100〈@⑤〈12/98,13/100〈@⑥ 〈13/98,所以分母可能是99。
是否正确,还需验证一下。
12/99=12÷99=0.121212……=@⑤; 13/99=13÷99=0.131313……=@⑥。
验证结果说明我们的猜想是正确的。
那么,所有循环节是两位数字的纯循环小数都可以写成分母是99的分 数吗?让我们再运用猜想的方法,把@⑦、@⑧化成分数后,验算一下。
@⑦=15/99=5/33,验算:5/33=5÷33=0.151515…… @⑧=18/99=2/11,验算:2/11=2÷11=0.181818…… 经过这次猜想和验证,我们可以得出这样的结论:循环节是两位数字的纯循环小数化成分数时,用一个循 环节组成的数作分子,用99作分母;然后,能约分的再约分。
现在,你能推断出循环节是三位数字的纯循环小数化成分数的方法吗? 因为循环节是一位数字的纯循环小数化成分数时,用9作分母, 循环节是两位数字的纯循环小数化成分数 时,用99作分母,所以循环节是三位数字的纯循环小数化成分数时,我们猜想是用999作分母, 分子也是一个 循环节组成的数。
让我们再来验证一下,如果这个猜想也是正确的,那么,我们就可以依次推下去了。
附图{图} 实验证明:我们的猜想是完全正确的。
照此推下去,循环节是四位数字的纯循环小数化成分数时,就要用 9999作分母了。
实践证明也是正确的。
所以,纯循环小数化成分数的方法是: 用9、99、999……这样的数作分母,9 的个数与循环节的位数相同;用一个循环节所组成的数作分子;最 后能约分的要约分。
二、化混循环小数为分数 我们已经运用猜想验证的方法研究过怎样化纯循环小数为分数,再用这种方法研究一下怎样化混循环小数 为分数。
还是先从较简单的数入手,如: 附图{图} ……这样循环节只有一位数字的混循环小数化成分数时,分子、分母分别有什么特点呢? 这样想:一个混循环小数有循环部分,还有不循环部分,能否将它改写成一个纯循环小数与一个有限小数 的和,然后再化成分数呢?让我们试试看。
附图{图} 观察以上过程,你能看出循环节只有一位数字的混循环小数化成的分数有什么特点吗?很容易看出:它们 的分母都是由一个9与几个0组成的数。
再仔细观察可以发现:0 的个数恰好与不循环部分的数字个数相同。
它 们的分子有什么特点呢?不难看出:它们的分子都比不循环部分与第一个循环节所组成的数要小。
到底小多少 呢?让我们算一算: (1)21-19=2 (2)543-489=54 (3)696-627=69 细心观察不难看出:分子恰好是一个比不循环部分与第一个循环节所组成的数少一个由不循环部分的数字 所组成的数。
这个规律具有普遍性吗?让我们运用以上的规律把 附图{图} 化成分数,验证一下它的正确性。
附图{图} 验证:352/1125=352÷1125=0.312888…… 验证的结果是完全正确的。
那么,循环节是两位数字的混循环小数化成的分数,分子、分母是否也有这样 的规律呢?分子是由一个比小数的不循环部分与第一个循环节所组成的数少一个不循环部分的数字所组成的数 ;分母是由9和0组成的数,0 的个数与不循环部分的数字个数相同,9的个数与一个循环节的数字个数相同。
让我们按照猜想的方法试把 附图{图} 化成分数,然后再验证一下。
附图{图} 实践证明,我们的猜想是正确的。
那么,循环节是三位数、四位数……的混循环小数是否也能按照这样的 方法化分数呢?让我们把 附图{图} 化成分数后,再验证一下 附...
初中数学学习心得范文
学习数学,而不是一两件事情.在我看来,最关键的是它培养的兴趣.如果你恨它,因为热管不感兴趣,甚至头痛,恐惧,这是很难的数学努力.这样的数学不感兴趣,不用功,这是很难去学习它. 当然,灯是不足够的兴趣.必须尝试去学习它.至少,一定要记住这本书的概念,公式,最好的时间来预览有什么新的教训,第二天掌握更快,更多,更好的新的一课.类记一些笔记下要点,回家晚上以上回顾,总结和学习新的东西.问老师不明白的主题,并问明了至今.当解决问题的余老师有一个简单的方法,可以提高,与老师和同学们进行了讨论.不要担心自己可能是错误的,但不敢作出这样的问题,这是一个很好的锻炼机会.教师激励我们的人,而不是“拐杖”,关键是要依靠自己的努力,多动脑.通常你可以做一些课外灵活的标题.有时,一个棘手的问题是怎么画,要几天做它,就会有成功的喜悦. 仔细,认真缺一不可.应认真回答每个问题集中思想.甲数学论文,大部分的问题是要计算.我们应该认真计算,有些问题的陷阱一定要小心.卷子做了可怕的仔细检查. 最后一个问题,做题的基础上,确定关键条件,认真了解.在一般情况下,每一个字,每一个条件有一定的作用,应充分利用回答的话题. :什么样的人数学学习一个广阔的知识背景教育是Suhuo穆林斯基说,“必须记住的材料比较复杂,而且必须保持在内存中的主要结论,规则是“知识背景”的学习过程中应该更加广阔.“换句话说,学生必须能够安全地识记,理解和灵活使用的公式,规则的结论,他一定要读,我想对很多并不需要记忆的材料. 调查过程中,我们发现,数学的大学生往往有广泛的知识背景,喜欢阅读一些文学名著,历史传记也喜欢读一些数学方面的书,如“快速计算秘密”,“物理和化学”,以及一个图书馆,书店有趣的智力的书籍.此外,推荐的书目和数学的“好玩的数学”系列“训练思考能力的数学书,数学的故事”. “除了建立了广阔的知识背景,阅读节制的能力和兴趣的学习有很大的帮助.像”懒“数学学科的多功能,有较强的逻辑性和系统性.学习掌握的数学知识,应该有更科学的学习方法,正确的方法,“功夫不负有心人”,更有效的方法是错误的,它会“吃力不讨好“事倍功半.学习效果,更多的研究,更多的兴趣,学习成绩始终不提,它会慢慢失去学习的信心.,是否掌握更科学的学习方法是学习成功的关键.根据出色的完成经验的学生数学学习的本质,我们相信,一个更科学的学习方法和习惯,主要表现为以下五个基本方面.1,良好的预览的大师讲座主动.凡事预则立,不预则废.2,注意在课堂上,良好的课堂笔记.讲座提前进入状态.课前准备讲座的效果直接影响3,及时复习,把知识转化为技能.审查是在学习过程中的一个重要组成部分.评论有计划,有必要及时检讨一天的功课,也及时审查阶段.4,完成工作认真,形成技能,提高分析问题和解决问题的能力,教育当局杨乐院士回答高中学生如何学习数学的问题,是非常简短的三句话:一类是基于了解和更多的实践,和第二的理解和积累的基础上,第三个是一步一步的实践这里所说的,是做标题,来完成这项工作.5,及时总结,知识结构化和系统化.一个主题或一个章节的结束,它是要及时总结,每一个方面的程度如何的实施,直接关系到下一个环节的进展和成效.出席第一次彩排,第一次审查工作,常常阶段总结.每天放学回家,你应该检讨作业的日子里,完成了一天的工作后,排练的第二天功课.这三样东西,一个也不能少,否则就不能保证第二天有一个高品质的演讲效果.BR /> [提示:使用错题平时的学习中,教师要求学生腾出一个错题,这很容易让学生回顾,但通常老师复习错题,这只是强调,学生很少问看到别人的错题本.事实上,学生往往借错题非常必要的.借注:借第一高的水平比他们的同学的错题本,这是很容易丰富,拓宽自己的知识领域.其次,容易错误的问题往往比低级别的学生敲响了警钟.借用相同的时间,做自己的学习笔记,自己平时看到的.至少在开始一个星期有两个重复的读,一个星期后,两个多星期,所以逐渐,这种方法可以应用到其他各种学科.,良好的动机和学习兴趣BR />的动机是直接权力影响学生的学习动机和学习兴趣,教师和家长在调查中提到的鼓励的话,通过一些小技巧从小就学习数学的兴趣,促进学生的学习,使学生积极学习.如数学顺口溜,有趣的数学问题,数学讲的故事.自己的数学知识解决实际问题的成就,获得的成就感和自豪感感,计算面积?的书籍,轮胎圆周,大赛颁奖华说:“有了兴趣已经厌倦了良好的不懈,随之而来的将腾出一些时间来学习的.”三强的意志> 正确的动机,并不意味着学生将能够成功地完成学习过程中,大,小,他们会遇到很多困难,在学习数学的过程中,让学生树立坚定的信心面对音乐,然后克服重重困难,获得知识和技能,你需要坚强的意志.许多学生的成绩差,是不是智力或其他方面的问题,但他们缺乏坚强的意志,克服困难,困难的“打退堂鼓,因此,学术总不能去了.学生顽强的意志和坚强决心,提高学生学习的自觉性和坚韧两方面.意识是指学生学习数学的目的和意义有深刻...
求一篇数学论文
数学建模论文范文--利用数学建模解数学应用题数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。
强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。
数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。
本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。
一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。
数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。
这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。
如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。
是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。
往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。
必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。
因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型第二层次:直接建模。
可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。
对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。
要进行分析、加工和作出假设,然后才能建立数学模型。
如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。
如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。
数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。
建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。
结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。
有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。
所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。
同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生...
大概要写什么内容?论文“我对数学与应用数学的认识和我的大学学习...
数学与应用数学专业毕业论文(设计)大纲先修课程:数学与应用数学专业主要课程、教育类课程等适用专业:数学与应用数学(本科、师范)一、目的培养和提高学生综合运用所学知识分析、解决问题的能力(包括数学理论研究和应用研究的能力、教学研究能力、文献检索、科技论文的写作能力)。
使学生获得科学、教学研究方法的初步训练。
培养学生的独立研究能力和重视开发学生的创新能力。
二、论文选题论文选题应贯彻为我国社会主义物质文明和精神文明建设服务的方针,在基础数学、应用数学和数学教育等学科的以下几个方面加以考虑:1.结合自己所学的专业知识,进行某一专业方向上的学术探讨;2.结合自己所学的专业知识,进行教学研究方面的专题研究或专题综合;3.结合自己所学的专业知识,联系实际解决一些应用问题;4.对中学有关数学课程的教材、教学方法进行专题研究;5.结合本人所教数学课程,对中等教育的教育理论和教育实践进行探讨;6.对新课程改革的理论与实践进行探讨。
论文课题不宜过大,难易程度要适当。
两名或两名以上学生选做同一课题论文时,各人的内容应有较大区别。
学生选定课题后,应填写《毕业论文任务书》,经指导教师同意,方可进行论文工作。
三、对毕业论文的基本要求1.立论、观点要符合马克思主义基本原理;2.对学术的探讨要符合科学性和逻辑性;3.对论述的主要问题要正确地运用所学专业、基础理论、基本知识和基本方法;4.论证严谨,结论明确。
所运用的研究方法基本正确,所收集的数据资料完整、充分,所设计的实验方法、步骤、正确可行,所提出的观点正确;5.文字通顺,表达确切,书写规范,独立完成;6.论文一般以3000字到6000字为宜,每篇论文的正文前应有300字左右的论文摘要(概括论文的中心论题以及基本观点、方法、结论)3到5个关键词。
论文中所引用的定义、定理、论述都要注明出处。
论文后应附有作者在写论文时所阅读的文献、参考书目录以及页码;7.论文应包括英文名、英文摘要和英文关键词;8.论文要按照统一格式进行排版(见江苏大学学报自然科学版)。
四、毕业论文成绩评定1.学生毕业论文成绩的评定采取指导教师和毕业论文答辩小组分别单独评分,按比例综合评定,最后由毕业论文答辩委员会综合平衡审定。
2.成绩分5个等级:优秀、良好、中等、及格、不及格。
毕业生毕业论文统一格式要求一、论文用纸:B5纸打印。
二、论文标题:1、主标题:用小二号黑体字,置于首页第一行,居中。
2、正文采用四级标题,分别以“一、(一)、1、(1)”标明。
其中一级标题用黑体字,二级标题用楷体,三、四级标题与正文字体相同。
三、论文正文:1、字体:用四号仿宋体。
2、段落:行距为24磅。
3、页码:居中。
四、年级、专业与姓名:四号宋体,置于主标题与正文之间,居中,上下各空一行。
五、注释:如有注释,皆在正文之后注明。
数学小论文范文
必须要有正题、摘要、关键词、正文主体、参考文献。
例如:小学数学实践活动教学活动 摘要:小学数学实践活动是发挥学生主体意识,培养学生主动探究精神的自由天地,它是以直接经验和综合信息为主要内容,以具有教育性、创造性、实践性、操作性的学生主体活动为主要形式,以鼓励学生主动参与、主动探索、主动思考、主动实践为基本特征,以促进学生思维发展和整体素质全面提高的一种教学形式。
关键词:小学数学实践活动课 教学 美国著名心理学家布鲁纳指出:“学习者不应是信息的被动接受者,而应是知识获取过程的主动参与者。
”在小学数学实践活动课的教学中,就应坚持以生为本的育人原则,充分挖掘每个学生的潜能,让学生通过观察、操作、分析、讨论、交流、猜测、合作等学习方式,引导学生自主学习,激发学生学习数学的兴趣,促进学生主动地、富有个性地学习,使学生真正成为学习的主人。
一、实践活动课的形式多种多样,内容丰富多彩 小学数学实践活动是发挥学生主体意识,培养学生主动探究精神的自由天地,它是以直接经验和综合信息为主要内容,以具有教育性、创造性、实践性、操作性的学生主体活动为主要形式,以鼓励学生主动参与、主动探索、主动思考、主动实践为基本特征,以促进学生思维发展和整体素质全面提高的一种教学形式。
实践活动的内容概括起来有以下几种: 1、实践操作型。
配合教材有关内容,进行实际测量与操作活动。
例如:学习了比例知识后,可以组织学生测量学校旗杆、大树的高度;学习了多边形的面积后,可组织学生到操场去实际测量并计算,解决实际问题;低年级学生在初步认识了长方体、正方体、圆等几何图形之后,安排“拼出美丽的图画”实践活动,通过让学生“折折、剪剪、拼拼、画画”拼出了多种图画,鼓励学生求异、求新,培养了他们的创新意识和审美情趣。
2、知识拓宽型。
结合教材中某些内容,适当加深和拓宽数学知识,并引导学生运用它们解答一些有趣的数学问题,训练学生思维灵活性和综合运用所学知识解决实际问题的能力。
例如:学习了三角形内角和是180°的知识以后,在数学活动课上组织学生探讨多边形内角和的变化规律。
3、渗透数学思想方法型。
通过让学生动手、动口、动脑活动渗透数学思想和方法。
例如:低年级教师可以在组织学生排队的过程中,让学生观察男、女生两排中哪一排长,哪排的人数就多,生动地渗透了“统计”的概念;通过投掷硬币50次,记录正面和反面的次数,并算出占总投掷次数的几分之几,渗透“概率”思想。
这种渗透既不出现什么深奥的概念,但却又灵活运用了生动的形式,使在课堂教学中不易做到的都能够充分反映出来,使数学思想得以体现。
4、社会调查型。
通过调查了解数学知识在工农业生产和实际生活中的运用,使学生真正体会到“生活中处处有数学”。
例如,学习百分数后,可设计一次“帮农民伯伯算算帐”的农户种植粮食和家庭经济收入的社会调查活动;学习统计图表后,可让学生收集某段时间交通车上的客流量,制成“客流量统计表”。
通过这样的实践活动,培养儿童从周围的情境中发现数学问题,使学生在实践中运用数学知识解决实际问题的能力得以提高。
二、实践活动真正成为学生自主学习的载体 1、实践活动有利于激发学生学习的兴趣,发掘学生的潜能。
“学习的最好刺激乃是对所学的内容的兴趣。
”兴趣是最好的老师,让学生动手操作是提高数学学习和获取知识的有效途径之一。
小学生好奇心强,求知欲旺盛,对新事物有着天生的亲切感,抓住这一特征,充分让他们动手拼、摆、折、分、数、画等一系列活动,亲自参与知识发现和探索过程,对大量的感性材料进行整理、分析、找出规律,使抽象的数学知识转化为形象的直观感受,提高学生学习数学的兴趣。
例如,教学“三角形内角和”引入新课后,让学生量出三角形三个内角的度数,然后把它们加起来,发现三角形三个内角之和为180度;再让学生用纸做一个任意三角形,将三个内角剪下,把三个角拼在一起,发现所拼成的角是一个平角,然后让学生自己归纳出三角形的内角和是180度。
这样让学生在操作中自己发现或提出数学问题,并创造性地加以解决,可以充分发掘每个学生的潜能,让每个学生在参与中得到发展。
2、实践活动有利于进行猜想的验证,增强学生学习的信心。
《新大纲》将观察、操作、猜测纳入教学要求之中,数学猜想是人的思维在探索数学规律、本质时的一种策略,是一种带有直觉性的比较高级的思维方法,新颖独创的思路往往产生猜想、假设、推测之中,教师必须尽量创造条件,鼓励学生对数学问题进行大胆猜想、假设、推测,让学生自主探索知识、发现规律。
3、实践活动有利于发展学生的思维,提高学生参与热情。
苏霍姆林斯基说过:“手和脑之间有着千丝万缕的联系,手使脑筋得到发展,使它更加明智;脑使手得到发展,使它变成思维的工具和镜子。
”手与脑的这种联系,就要求教师在指导学生实践操作时,以“动”促“思”,将操作与思维活动联系起来,发展学生的思维。
例如:教学“圆锥体的体积”,我针对学生对...
如何培养学生学习数学的兴趣论文
浅谈如何培养学生学习数学的兴趣 时间:2016-07-17 作者:班贵芹 论文摘要:浅谈如何培养学生学习数学的兴趣 论文关键词:学生学习 数学 兴趣 我国古代教育家朱熹曾说过:“教人未见其兴趣,必不乐学。
”可见,培养学生学习兴趣是何等的重要。
尤其是农村学生在改革开放、经济又快又好发展这一巨大洪流的冲击下,厌学现象普遍存在,致使发生学生流失。
面对这种情况,我们每名老师都应千方百计培养学生的学习兴趣,只要有了兴趣,学生就会喜爱读书,这无疑对提高整个中华民族的文化素质具有深远的意义。
《数学新课程标准》指出:“重视从学生的生活经验和已有的知识中学习数学和理解数学。
”“数学教学要紧密联系学生的生活环境,从学生经验和已有的知识出发,创设有助于学生自主学习、合作交流的情景,使学生通过观察、操作、归纳等活动,掌握基本的数学知识和技能,发展他们的能力,激发对数学的兴趣,以及学好数学的愿望。
”在教学实践中,笔者感觉到培养数学兴趣比教会学生解题能力更加重要。
一、数学问题具有真实的生活背景。
学生平时做的练习题大多都是经过人为加工的纯数学问题,尽管有的问题题材来源于实际生活,但是大部分通过精加工以后都变成了纯粹的“应用题”模型。
实际上编题者(老师)代替学生完成了从实际生活中收取信息这一过程,学生只要把自己熟悉的方法或公式“复制”到模型中去就能够解决问题,降低了学生理解问题、分析问题的能力。
严峻的事实告诉我们,在日常的教学中,教师应该尽可能多地给学生呈现生活中的现实问题,或是只是对现实问题进行简单加工处理,千万不要“浓缩”成百分百的纯数学问题。
二、让数学学习回归生活实际 。
我们说数学源于生活,生活中的数学是具有鲜活力的,一切脱离生活实际的教和学都显得苍白无力。
因为学生都没有做过生意,自然就不会知道生意之道。
如果在讲这道题前,教师利用学生中的家长、亲戚、朋友等熟人中做生意的资源,分小组,联系好以后,开展一些数据的调查、收集,然后再与店主进行交流,实地观察、采访一些顾客等一系列的活动,我想到那时,教师想让他们沉默,他们也都不会愿意。
因此,教师应在日常的教学众多引导学生开展一些小调查、小实践、小试验、小研究等应用性的活动,促进学生将数学知识融入到火热的生活中去,增强应用数学的能力。
鼓励学生应用生活的经验解决数学的问题,提高数学的理解力。
还可以组织学生进行一系列专题性的数学实践活动。
作为教学一线的教师,我们有必要赋予学生一双“数学”慧眼,培养学生具有关注社会、关注生活、关注自我的意识。
(一)创设生活情景,培养学生的学习兴趣。
爱因斯坦说过:“兴趣是最好的老师。
”因此在数学教学中,教师应结合教学内容创设生活的情景,把生活中的数学原形生动地展现在课堂中,让学生从周围熟悉的事物中学习数学和理解数学。
如:在教学“平均数”时,代写毕业论文老师选出两队进行拍球比赛,每组三人参加,其中一人做记录。
比赛后,老师将总成绩公布于众;然后老师帮助输了的那组拍球,结果老师参与的那组转败为胜,为此,同学们纷纷举手表示老师的不公平,即人数不等。
从而为学习平均数创设了情景,使学生们积极思维,找出“公平”的办法,这样,既激发了学生的学习兴趣,又培养了学生的学习能力,也获取了新知。
(二)动手实践,提高学生学习的兴趣。
《新课标》指出:“有效的数学学习活动不是单纯地依赖、模仿和记忆,而动手实践,自主探究,合作交流才是学生学习的主要方式”。
根据小学生好奇、好动的心理特点,在课堂教学中,适当增加动手操作的机会,让学生通过看、摸、折、剪、摆、画等实际操作,使多种感官一起参与活动,让无意注意和有意注意有机结合,促进学生把外界的活动和内隐的思维活动紧密联系起来,使学生从直观的操作到形象思维,从感性认识上升到理性认识。
强化了对数学概念的理解和记忆。
既提高了学生的操作能力,又培养了学生的创新精神。
三、灵活设计练习,增强学生的学习兴趣 在课堂学习中,应力求形式新颖,寓教于乐,减少机械化的程序,增强学生的学习兴趣。
如:习题设计,可用学生喜欢的小动物的眼睛出示数字,在动物的鼻子上出示运算符号。
这样把静止不动的习题予以拟人化,变静为动。
四、即时多元评价,打破学生的沉默 “亲其师,信其道。
”教学过程中,缺乏教师的激励性和肯定的评价,教学是算不上成功的。
如果教师对每个学生的每一个合理的想法都给予肯定,使学生得到心理上的满足,体验到成功的喜悦,以达到强化学习动机,增强学习的信心和目的性。
强化学生好的一面,用亲切的言语鼓励尽可能多的学生参与进来。
营造一个没有压力,没有权威的课堂氛围,既调动了学生的积极性和学习数学的兴趣,又能有效地培养学生的想象力和思维的灵活性。
如:提供成功机会,给予激励评价。
“在人的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。
”只有通过自己的亲身体验,儿...
小学生六年级数学论文范文怎么写?
数学小论文 关于“0” 0,可以说是人类最早接触的数了。
我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。
”这样说显然是不正确的。
我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。
而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。
2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。
” “任何数除以0即为没有意义。
”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。
一个整体无法分成0份,即“没有意义”。
后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。
从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。
105、2003年中的0指数的空位,不可删去。
203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。
0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。
”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。
作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
六年级数学小论文范文!
“十一”期间,许多商场都在打折,趁着这个好时机,我和爸爸妈妈一起去了“万霖”商场。
在二楼,我们看中了一套西服,它的标价是五百二十元,售货员说:“现在正赶上‘十一’,您可以选择打八折或者满二百返一百六十,两种都差不多。
”真的差不多吗?我脑子产生了这样一个疑问。
如果选择打八折,那么就要花520*0.8=416(元)。
而要是满两百返一百六十呢。
我们要先付520元,之后会拿到160*2=320(元)的返券,那我们实际就花了520-320=200(元)。
416和200比起来,当然第二种比较好。
可是拿到返券之后呢?再买320元的东西又可以返160元,而这160元的返券离200元只差200-160=40(元),你要是填上这40元买东西,就又可以返160元。
你难道不心动吗?可如果真这样做,你就掉入一个无底洞,花200返160,花200返160……你永远也花不完剩下的钱。
商家为了赚钱可真是“费尽心机”啊!
三年级数学论文范文150
抬头望着天,星星快乐的眨着眼。
我忽然起身,来到客厅,找出速溶咖啡,为自己泡一杯苦涩的咖啡。
咖啡在杯子中,安静的它不会反抗,正如我一样。
在应试教育面前,我只有顺着它,而改变自己应有的形状。
我累了,我想反抗,但我不能。
苦涩的咖啡,在舌间流过。
没有结局,只有经过。
我品味出了生活的苦。
我无奈地笑了笑,手上的杯子被放了下来。
我走到画笔前。
我想起了以前的种种事情,似乎想到了什么。
我抽出了画纸,手握画笔在纸上勾出最自然的自己。
画活了,却无人欣赏。
泪水顺着脸颊流入口中。
我慢慢的品尝。
忽然看到餐桌上的剩饭剩菜,我才想起我没有吃饭。
忘了怎么快乐的笑了,只剩下淡淡的苦笑。
我盛了饭,狼吞虎咽起来。
生活中的酸甜苦咸,被我一股脑地塞进了口中,来不及品尝。
转载请注明出处范文大全网 » 小学数学论文,给几篇例文