范文一:杨氏弹性模量
教案 用拉伸法测金属丝的杨氏弹性模量
弹性模量是衡量材料受力后发生形变大小的重要参数之一,弹性模量越大, 越不易发生形变。本实验采用拉伸法测量杨氏弹性模量。实验中, 涉及到较多长 度量的测量,根据不同测量对象,选用不同的测量仪器。本实验要求能通过
1. 掌握用光杠杆法测量微小长度的原理和方法。
2. 用杨氏弹性模量仪,掌握拉伸法测定金属丝的杨氏弹性模量。 3. 学会用逐差法处理实验数据。 【实验仪器】
杨氏弹性模量仪,钢卷尺,水准仪,螺旋测微器。 【实验原理】
一、拉伸法测定金属丝的杨氏弹性模量
设一粗细均匀的金属丝长为 L ,截面积为 S ,上端固定,下端悬挂砝码,金 属丝在外力 F 的作用下发生形变,伸长 L Δ。根据胡克定律,在弹性限度内,金 属丝的胁强 和产生的胁变 ?成正比。
即
F L
E
S L
?= (9-1) 或 FL
E S L
=
? (9-2) 式中比例系数 E 称为杨氏弹性模量。 在国际单位制中, 杨氏弹性模量的单位为牛 每平方米,记为 2-?m N 。
实验证明,杨氏弹性模量与外力 F 、物体的长度 L 和截面积 S 的大小无关, 它只决定于材料的性质。它是表征固体材料性质的一个物理量。在式(9-2)的 右端, L F 、 和 S 可用一般的 仪 器 和方法测得,唯有 L Δ是一个 微 小
变化量,需用光杠杆法测量。 二、 光杠杆法测微小长度
将一平面镜固定在 T 形横架上, 在支架的下部安置三个尖脚就构成一个光杠 杆,如图 9-1所示。
用光杠杆法测微小长度原理图如图 9-2所示,假定开始时平面镜 M 的法线
no O 在水平位置,则标尺 H 上的标度线 0n 发出的光通过平面镜 M 反射后,进入 望远镜,在望远镜中观察到 0n 的像。当金属丝受外力而伸长后,光杠杆的主杆 尖脚随金属丝下降 L Δ, 平面镜转过一角度 α。 根据光的反射定律, 镜面旋转 α角, 反 射 线 将 旋 转 α2角 , 这 时 在 望 远 镜 中 观 察 到 2n 的 像 。 从 图 9— 2可 见
(93) L
tg b
α?=
-
20
_2(94) n n l tg D D
α==-
式中 b 为光杠杆主杆尖脚到前面两脚连线的距离; D 为标尺平面到平面镜的距 离; l 为从望远镜中观测到的两次标尺读数之差。
当 b L ?时,>
2l D
α= 从上两式中消去 α, 得 ) 59(2-=?D
bl
L
或
b
L
D l ?=
2 上式表明,光杠杆的作用就是将微小的变化量 L Δ放大为标尺上的位移 l ,即
L Δ放大了
2D
b
倍。通过测量 l b 、 和 D 这些容易测量准确的量,间接地测量 L Δ。 设金属丝的直径为 d ,金属丝的截面积为
24
1
d S π=
(9-6) 将式(9-5)和式(9-6)代入式(9-2) ,得
bl
d FLD
E 28π=
(9-7) 由上式可见,只要测量 l b d D L F 和 、 、 、 、 ,就可算出待测金属丝的杨氏弹 性模量。
杨氏弹性模量仪如图 9-3所示,双柱支架 B 上装有两根立柱和三只底脚螺 丝,调节底脚螺丝, 可以使立柱铅直。 立柱的中部有一个可以沿立柱上下移动的 平台 G 。待测金属丝 L 的上端夹紧在横梁上的 夹子 A 中,下端夹紧在圆柱夹具 D 中。圆柱夹 具 D 穿过固定平台 G 中间的小孔可以上下自由 移动,下端系有砝码及砝码托 E 。光杠杆 M 的 主尖脚放在圆柱夹具的上端面,两前尖脚放在 固定平台 G 的凹槽内,望远镜 R 和标尺 H 是测 量微小长度变化的装置。
【实验内容】
一、杨氏弹性模量仪的调节
1.将水准仪放在平台 G 上,调节杨氏弹性 模量仪双柱支架上的底脚螺丝,使立柱铅直。
2.将光杠杆放在平台 G 上, 两前尖脚放在平台的凹槽中, 主杆尖脚放在圆柱 夹具的上端面上,但不可与金属丝相碰。 调节平台的上下位置, 使光杠杆三尖脚 位于同一水平面上。
3.在砝码托上加 kg 1砝码 (此砝码和砝码托不计入所加外力 F 之内 ) ,把金属 丝拉直。并检查圆柱夹具 D 是否能在平台孔中自由移动。
4.将望远镜和标尺安放在距离光杠杆约 1.5米处。 使光杠杆镜面与平台面大 致垂直。望远镜筒处于水平状态并与镜面等高,标尺处于铅直状态。
5.从望远镜筒外上方沿镜筒轴线方向观察平面镜内是否有标尺的像。若无, 则上下左右移动望远镜位置和微调平面镜角度, 直至在平面镜中看到标尺的像为 止。
6.调节望远镜的目镜, 使观察到的十字叉丝最清晰。 再前后调节望远镜物镜, 使能看到清晰的标尺像。 微微上下移动眼睛观察十字叉与标尺的刻度线之间有没 有相对移动,若无相对移动, 说明无视差。 记下此时十字叉丝横线对准标尺的刻 度值 0n (0n 应选择在零刻度附近 ) 。若有相对移动,说明存在视差,需仔细调节 目镜(连同叉丝)与物镜之间的距离,并配合调节目镜,直到视差消除。 二、测金属丝的杨氏弹性模量
1.轻轻将砝码加到砝码托上,每次增加 kg 1,加至 kg 7为止。逐次记录每加 一个砝码时望远镜中的标尺读数 721n n n 、 、 。加砝码时注意勿使砝码托摆动, 并将砝码缺口交叉放置,以防掉下。
2.再将所加的 7kg 砝码依次轻轻取下,并逐次记录每取下 kg 1砝码时望远镜
中的标尺读数 0
56n n n ''' 、 、 。 3.用钢卷尺测量光杠杆镜面至标尺的距离 D 和金属丝的长度 L 各三次, 分别 求出它们的平均值。
4.将光杠杆取下放在纸上, 压出三个尖脚的痕迹, 用游标卡尺测量出主杆尖 脚至前两尖脚连线的距离 b 三次。取其平均值。
5.用螺旋测微器在金属丝的上、中、下三处测量其直径 d ,每处都要在互相 垂直的方向上各测一次,共得六个数据,取其平均值。 将以上数据分别填入表 9-1、表 9-2和表 9-3中。
6用逐差法算出 l ,再将有关数据化为国际单位代入式(9-7)中,求出金属丝 的杨氏弹性模量的平均值 _
E 。将 _
E 与公认值比较,求出相对误差。
[钢丝 0E ) 10/6. 21~1. 20(210-?m N ]。
【注意事项】
1.光杠杆、 望远镜与标尺所构成的光学系统一经调节好后, 在实验过程中不 可再移动,否则实验数据无效,实验应从头做起。 2.调节光杠杆时要细心,以免损坏。
3.用螺旋测微器测量金属丝直径时, 应注意维护金属丝的平直状态, 切勿将 它扭折。
【实验数据】
表 9-1 测量金属丝的直径
表 9-2 测量金属丝长度、光杠杆长度和平面镜到标尺距离
表 9-3 测金属丝的杨氏弹性模量
公认值:0E =) 10/6. 21~1. 20(2
10
-?m N
00
100%______%r E E E E -=
?=
【思考题】
1. 为什么金属丝的伸长量 L Δ要用光杠杆测量,而 b L D 、 、 则用钢卷尺测量 (用误差分析说明)?
2. 为什么用逐差法处理本实验有关数据能减小测量的相对误差?
范文二:弹性模量求法
Polymer Testing 29(2010)95–99
Contents lists available at ScienceDirect
Polymer Testing
journal homepage:
www.elsevier.com/locate/polytest
Test Method
Comparative analysis on the nanoindentation of polymers using atomic force microscopy
Ah-Young Jee, Minyung Lee *
Division of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Republic of Korea
a r t i c l e i n f o
Article history:
Received 6August 2009
Accepted 15September 2009Keywords:
Nanoindentation
Atomic force microscopy Hardness
Elastic modulus
a b s t r a c t
Using atomic force microscopy (AFM)nanoindentation, we have measured the mechanical properties of various polymers:low density polyethylene, polyvinyl alcohol, high density polyethylene, ultrahigh molecular weight polyethylene, polyvinyl chloride, polycarbonate, Nylon 6, poly(methylmethacrylate), polystyrene and polyacrylic acid. The hardness and Young’smodulus of the polymers were obtained by AFM through both the force–inden-tation and area–depthcurves. Our comparative analysis shows that the two methods give almost identical results with self-consistency.
ó2009Elsevier Ltd. All rights reserved.
1. Introduction
Nanoindentation testing is a method of measuring the mechanical properties of a material such as hardness and Young’smodulus on the microscopic scale [1]. In conven-tional nanoindentation, a small tip is pressed into a sample with a known load (force)and retracted sequentially, which generates a force–displacementcurve. The indentation procedure developed by Oliver and Pharr (O&P)has been widely used for hard materials such as metals and ceramics [2,3]. The O&Pprocedure is based on Sneddon’sapproach in which force F is given as a power low of displacement h :F eh T?a h m , where a and m are constants that depend on the mechanical properties of the sample and tip geometry. The model assumes:the sample deformation is elastic as well as plastic; deformation is time-independent; the indenter is a rigid punch; no sink-in or pile-up exists.
Commercial nanoindenters that utilize the O&Pproce-dure do not offer a wide range of loads necessary for soft materials. As an alternative, atomic force microscopy (AFM)nanoindentation has been used to measure the mechanical properties of polymers and biomaterials [4–21]. An
advantage of AFM over conventional indentation is that it measures the contact area and depth from the imaging data directly with the same tip used to obtain the force–displacement curve. This means that two sets of data are available from AFM nanoindentation [10,13,20]. With the force–displacementcurve, the mechanical properties can be obtained by applying the O&Pprocedure. In addition, the hardness and Young’smodulus can be directly obtained from the imaging data. By AFM nanoindentation, we have measured the mechanical properties of various polymers:low density polyethylene (LDPE),polyvinyl alcohol (PVA),high density polyethylene (HDPE),ultrahigh molecular weight polyethylene (UHMWPE),polyvinyl chloride (PVC),polycarbonate (PC),polycaprolactam (Nylon6), poly(-methyl methacrylate) (PMMA),polystyrene (PS)and poly-acrylic acid (PAA).The results, processed by using O&Pand image analysis, show that hardness and Young’smodulus obtained from the two methods give almost identical results.
2. Experimental details
LDPE (MW35,000), HDPE, (MW125,000), UHMWPE (MW4,500,000), PS (MW192,000), PVA (MW115,000), PC (MW64,000), PMMA (MW120,000), and PAA (MW
*Corresponding author. Tel.:t82232772383; fax:t82232772384. E-mail address:mylee@ewha.ac.kr(M.
Lee). 0142-9418/$–see front matter ó2009Elsevier Ltd. All rights reserved. doi:10.1016/j.polymertesting.2009.09.009
96A.-Y. Jee, M. Lee /Polymer Testing 29(2010)95–99
240,000) were purchased from Aldrich. Nylon 6(MW18,000) was bought from Polyscience.
Solvents to prepare polymer solutions were:THF for LDPE, PVC, PMMA, and PC; decalin for HDPE and UHMWPE; 6:1mixture of DMSO and H 2O for PVA. cyclohexane for PS; water for PAA; 2, 2, 2-tri?uoroethanolfor Nylon 6. The samples were prepared by compression molding, annealing at 110–200 C depending on polymer, and cooling to room temperature. The resulting sample is a disk having the thickness of ca. 1mm and a diameter of 1.5cm with a ?atsurface.
Nanoindentation measurements were carried out at room temperature with an AFM (XE-70,PSIA) in an acoustic box. The indenter was a Berkovich tip (sapphirecantilever with a diamond tip) having a resonance frequency of 45.9kHz and a spring constant of 145N/m.As shown in Fig. 1, the tip geometry consists of a sharp three-sided pyramid, the base of which is an equilateral triangle with a half angle of 30 . The radius of curvature at the tip apex was nominally less than 25nm. Load on the surface layers of polymers ranged from 0.1to 2.25m N. A speed of 300nm/s was used for all the experiments. The AFM images were obtained with the same Berkovich tip by a non-contact mode at 0.5Hz scan rate.
The measurements of AFM nanoindentation have been performed following some general rules [2]. First, the indentation depth should be deep enough to minimize the surface effect. However, the indentation depth should be less than 10%of the ?lmthickness when the sample is mounted on a hard substance. Otherwise, the measured value is usually larger than it should be, due to the effect of the support. The second is sink-in or pile-up effect appearing in the unloading curve as a bulge (‘‘nose’’).It can be overcome by performing the nanoindentation at a high unloading rate with long holding time. Lastly, to obtain more accurate results, it is necessary to calibrate AFM components such as cantilever spring constant, tip shape, and piezoelectric scanner movement.
Fig. 1. The schematic illustration of a Berkovich tip with the de?nitionof a half angle. A is the indentation area, h is the indentation depth, and a is the half
angle.
3. Results and discussion
A schematic illustration of the O&Pprocedure is shown in Fig. 2. The hardness is de?nedby
H ?
F max eh max TA eh (1)
c T
and the reduced elastic modulus is given by
E S
r ???????????
p r ?
2A eh c T
(2)
where S is the slope of the unloading curve and b ?1.034for a Berkovich indenter. The elastic modulus (E ) can be calculated from the reduced modulus and the indenter modulus E i by
1à1àn 2áà1àn 2i áE ?tr E E (3)
i
where n and n i are the Poisson ratio of the sample and indenter, respectively. The diamond tip is much stiffer than polymer (E
h 3F max
c ?h max à
S
(4)
The parameter 3depends on the tip shape, spanning from 0.72(conical)to 1(?at).For the Berkovich indenter, 3?0.75is recommended. If h c is known, then we can calculate the area function
A eh c T?24:56h 2c
(5)
It should be noted that AFM nanoindentation is different from the conventional nanoindentation because it utilizes the cantilever de?ection.
F ed T?kd
(6)
Fig. 2. The schematic illustration of the force–displacementcurve. The meanings of parameters are described in the text.
A.-Y. Jee, M. Lee /Polymer Testing 29(2010)95–9997
D e p t h (n m )
L o a d (n N )
Width (μm)
Fig. 5. The indentation–depthpro?lesof polymers used in this work.
Piezo displacement (nm)
Fig. 3. The experimentally measured force–displacementcurve for ten polymers.
where k is the cantilever stiffness and d is the cantilever de?ection.That is, the raw data, which is the force–displacement (F –z ) curve, should be converted to the force–indentation (F –h ) curve. The indentation depth is given by
h ?z àd (7)
where z is the piezo displacement and d is the cantilever de?ection.The conversion of the F –z curve to the F –h curve is depicted in detail in Fig. 2.
Ten different polymers were chosen to cover a wide range of Young’smodulus (0.1–5GPa). Fig. 3shows the force–displacementcurve for these polymers. The maximum load applied was 2.25m N. The data show that LDPE has the lowest slope and PAA is the highest with the order LDPE
The AFM images of the contact area and depth also give information on hardness and elastic modulus of the
polymers. The contact area images of ten polymers, recor-ded by AFM, are shown in Fig. 4. Smaller contact area indicates higher hardness. The hardness was calculated from H ?F /A , where F is the applied force and A is the area obtained from the image.
The indentation depth pro?lesare shown in Fig. 5. The curves were obtained by sweeping the indentation image parallel to the baseline of the triangle that crosses the deepest point. Any sink-in or pile-up effects were not visibly seen in the data. The indentation depth is given in the following order:LDPE (3.43m m), PVA (2.16m m), HDPE (1.60m m), UHMWPE (1.27m m), PVC (1.19m m), PC (0.96m m), Nylon 6(0.81m m), PS (0.73m m), PMMA (0.70m m), and PAA (0.63m m).
In order to obtain Young’smodulus from the AFM F –h curve, various models have been suggested such as Hertz, Johnson–Kendall–Roberts(JKR),Derjaguin–Muller–Top-orov (DMT)and Dimitriadis. The Hertz model assumes in?nitethickness, elastic deformation and no adhesion between tip and sample [22]. For this reason, usually the loading curve is used to apply the Hertz model. JKR and DMT accommodate adhesion forces to the Hertz model
0.5 μm
LDPE PVA HDPE UHMWPE PVPC
PC Nylon 6PS PMMA PAA
Fig. 4. The indentation images of polymers used in this work.
98A.-Y. Jee, M. Lee /Polymer Testing 29(2010)95–99
Table 1
The mechanical properties of ten polymers measured by AFM during contact. JKR is useful for a large tip and soft mate-rials with high adhesion [23]. DMT is good for a small tip and stiff materials with low adhesion [24]. For a thin ?lmsupported on a hard substance, a modi?edHertz model was suggested by Dimitriadis and coworkers [25]. To apply the Dimitriadis model, the ?lmthickness should be known accurately [26].
From the indentation depth pro?le,the Young’smodulus can be calculated by applying the Hertz model [8]. For a Berkovich tip, it is given by
F ?
3E tan a 2
4e1à2T
d
(8)
where d is the indentation depth identical to h in the O&Pprocedure. The half angle a as shown in Fig. 1is 30 . The values of Poisson ratio n for ten polymers were taken from the literature [27–33], and given in Table 1. One can calculate the elastic modulus by ?ttingthe F –h curve to Eq. (8). In this work, the elastic modulus was simply calculated from the maximum depth at the maximum load. That is,
E ?
4à1àn 2á
F max
3tan d 2
(9)
max
)
a M P ( s s e n d r a H 0
1
2
3
4
5
Young's modulus (GPa)
Fig. 6. The correlation between hardness and elastic modulus calculated by the O&Pprocedure and image analysis, respectively.
The Hertz model states that the Young’smodulus of a material is inversely proportional to the square of indentation depth at a given force.
We present all the data obtained by O&Pand image analysis in Table 1. Hardness and Young’smodulus of the ten polymers are plotted together in Fig. 6. The correlation is linear with the correlation coef?cientof R 2?0.99for both cases. It seems that both values analyzed by F –h curves and A –d images agree well within experimental error.
It can, therefore, be stated that AFM nanoindentation is a versatile tool to measure the mechanical properties of polymers, and both of O&Pand image analysis are self-consistent. 4. Conclusions
Using AFM nanoindentation, we have measured hard-ness and Young’smodulus of ten different polymers:LDPE, PVA, HDPE, UHMWPE, PVC, PC, Nylon 6, PS, PMMA and PAA. Compared with conventional indentation, AFM measures the contact area and depth from the imaging data directly with the same tip used to obtain the load–displacement curve. With the force–indentationcurve, the mechanical properties of the polymers were obtained by applying the O&Pprocedure. In addition, the hardness and Young’smodulus were directly obtained from the imaging data. The results, processed by using O&Pand image anal-ysis, show that the mechanical properties obtained from the two methods give almost identical results. It can, therefore, be stated that AFM nanoindentation is a versatile tool to measure the mechanical properties of polymers.
References
[1]W.C. Oliver, G.M. Pharr, An improved technique for determining
hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(1992)1564.
[2]W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic
modulus by instrumented indentation:advances in understanding and re?nementsto methodology. J. Mater. Res. 19(2004)3.
[3]D. Tranchida, S. Piccarolo, J. Loos, A. Alexeev, Accurately evaluating
Young’smodulus of polymers through nanoindentations:a phenomenological correction factor to the Oliver and Pharr procedure. Appl. Phys. Lett. 89(2006)171905.
[4]R.E. Mahaffy, S. Park, E. Gerde, J. Kas, C.K. Shih, Quantitative analysis
of the viscoelastic properties of thin regions of ?broblastsusing atomic force microscopy, 86(2004)1777.
[5]T.-H. Fang, W.-J. Chang, S.-L. Tsai, Nanomechanical characterization
of polymer using atomic force microscopy and nanoindentation. Microelectron. J. 36(2005)55.
[6]D. Tranchida, S. Piccarolo, On the use of the nanoindentation
unloading curve to measure the Young’smodulus of polymers on a nanometer scale. Macromol. Rapid Commun. 26(2005)1800. [7]C.A. Clifford, M.P. Seah, Quanti?cationissues in the identi?cationof
nanoscale regions of homopolymers using modulus measurement via AFM nanoindentation. Appl. Surf. Sci. 252(2005)1915.
[8]M.J. Rosenbluth, W.A. Lam, D.A. Fletcher, Force microscopy of non-adherent cells:a comparison of Leukemia. Biophys. J. 90(2006)2994.
[9]A.C. Fischer-Cripps, Critical review of analysis and interpretation of
nanoindentation test data. Surf. Coat. Technol. 200(2006)4153. [10]D. Tranchida, S. Piccarolo, M. Soliman, Nanoscale mechanical char-acterization of polymers by AFM nanoindentation:critical approach to the elastic characterization. Macromolecules 39(2006)4547. [11]K. Miyake, N. Satomi, S. Sasaki, Elastic modulus of polystyrene ?lm
from near surface to bulk measured by nanoindentation using atomic force microscopy. Appl. Phys. Lett. 89(2006)
031925.
A.-Y. Jee, M. Lee /Polymer Testing 29(2010)95–99
99
[12]M.P.E. Wenger, L. Bozec, M.A. Horton, P. Mesquida, Mechanical
properties of collagen ?brils.Biophys. J. 93(2007)1255.
[13]D. Tranchida, S. Piccarolo, J. Loos, A. Alexeev, Mechanical charac-terization of polymers on a nanometer scale through nano-indentation. A study on pile-up and viscoelasticity. Macromolecules 40(2007)1259.
[14]D. Tranchida, Z. Ki?ie,S. Piccarolo, Viscoelastic recovery behavior
following atomic force microscope nanoindentation of semi-crystalline polyethylene. Macromolecules 40(2007)7366.
[15]B. Tang, A.H. Ngan, J.B. Pethica, A method to quantitatively measure
the elastic modulus of materials in nanometer scale using atomic force microscopy. Nanotechnology 19(2008)495713.
[16]F. Bedoui, F. Sansoz, N.S. Murthy, Incidence of nanoscale heteroge-neity on the nanoindentation of a semicrystalline polymer:experi-ments and modeling. Acta Mater. 56(2008)2296.
[17]D. Passeri, A. Bettucci, A. Biagioni, M. Rossi, A. Alippi, M. Lucci,
I. Davoli, S. Berezina, Quantitative measurement of indentation hardness and modulus of compliant materials by atomic force microscopy. Rev. Sci. Instrum. 79(2008)066105.
[18]B. Cappella, D. Silbernagl, Nanomechanical properties of polymer
thin ?lmsmeasured by force-distance curves. Thin Solid Films 516(2008)1952.
[19]W. Ngwa, K. Chen, A. Sahgal, E.V. Stepanov, W. Luo, Nanoscale
mechanics of solid-supported multilayered lipid ?lmsby force measurement. Thin Solid Films 516(2008)5039.
[20]D. Tranchida, Z. Ki?ie,S. Piccarolo, Viscoelastic recovery behavior
following atomic force microscope nanoindentation of semi-crystalline polyethylene. Macromolecules 40(2007)7366.
[21]T. Thome, S. Fouchez, S. Delalande, Determination of silicone coating
Young’smodulus using atomic force microscopy. Physica B 404(2009)22.
[22]H.J. Hertz, On the contact of rigid elastic solids and hardness. Reine
Angew. Math. 92(1881)156.
[23]K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and the contact
of elastic solids. Proc. R. Soc. London Ser. A. 324(1971)301.
[24]B.V. Derjaguin, V.M. Muller, Y.u.P. Toporov, Effect of contact defor-mations on the adhesion of particles. J. Colloid Interface Sci. 53(1975)2.
[25]E.K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, R.S. Chadwick,
Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82(2002)2798.
[26]H. Brochu, P. Vermette, Young’smoduli of surface-bound liposomes
by atomic force microscopy force measurements. Langmuir 24(2008)2009.
[27]D. Briassoulis, E. Schettini, Measuring strains of LDPE ?lms:the
strain gauge problems. Polym. Test. 21(2002)507.
[28]Christele Bartholome, Alain Derre, Olivier Roubeau, Cecile Zakri,
Philippe Poulin, Electromechanical properties of nanotube-PVA composite actuator bimorphs. Nanotechnology 19(2008)325501. [29]J.G.J. Beijer, J.L. Spoormaker, Modeling of creep behaviour in injec-tion-moulded HDPE. Polymer 41(2000)5443.
[30]S.A. Chizhik, Z. Huang, V.V. Gorbunov, N.K. Myshkin, V.V. Tsukruk,
Micromechanical properties of elastic polymeric materials as pro-bed by scanning force microscopy. Langmuir 14(1998)2606.
[31]T.D. Fornes, D.R. Paul, Modeling properties of nylon 6/clay
nanocomposites using composite theories. Polymer 44(2003)4993.
[32]W. Xu, X.F. Yao, H.Y. Yeh, G.C. Jin, Fracture investigation of PMMA
specimen using coherent gradient sensing (CGS)technology. Poly-mer Test 24(2005)900.
[33]Toshikazu Takigawa, Yoshiro Morino, Kenji Urayama, Toshiro
Masuda. Polym. Gels Networks 4(1996)l.
范文三:弹性模量
5.6 弹性模量E和泊松比μ的测定
拉伸实验中得到的屈服极限ReL、ReH和强度极限Rm,反映了它承受载荷的能力;而延伸率A和截面收缩率Z,反映了材料塑性变形的能力。弹性模量E则反映材料在弹性范围内抵抗变形的能力,它是以其所承受载荷下产生的变性量来表征的。
在弹性范围内纵向应力与纵向应变的比例常数就是材料的弹性模量E,横向应变与纵向应变之比值称为泊松比μ,也叫横向变形系数,它是反映材料横向变形的弹性常数。
一.实验目的
1.用电测方法测定低碳钢的弹性模量E及泊松比μ;
2.验证虎克定律;
3.掌握电阻应变测试方法的原理与应用。
二.实验原理
1.测定材料弹性模量E一般采用比例极限内的拉伸实验,材料在比例极限内服从虎克定律,其载荷与变形关系为:
Δ(Δl)=ΔFl0 ES0(5.6-1)
若已知载荷ΔF及试件承载面积S,只要测得试件单位长度上的伸长量Δl/l0,即线应变,便可得出弹性模量: E=ΔFl0ΔF1=?(Δl)S0S0ΔΔl=0ΔF1? S0Δε(5.6-2)
本实验采用电阻应变片测量线应变ε。在面积确定的情况下,通过测试所加载荷对应的线应变ε,求得材料的弹性模量E。
采用增量法逐级加载,分别测量在相同载荷增量 ΔF作用下试件所产生的应变增量Δε。采用增量法可以验证力与变形间的线性关系,若每次载荷增量ΔF相等,相应地由应变仪读出的应变增量Δε也大至相等,则线性关系成立,从而验证了虎克定律。
加载的最大应力值不应超过材料的比例极限,一般取屈服极限ReL70%~80%,故最大载荷:
Fmax=0.8ReL?S0
加载级数一般不少于5级。 (5.6-3)
2.材料在受拉伸或压缩时,不仅沿纵向发生纵向变形,在横向也会同时发生缩短或增大的横向变形。由材料力学知,在弹性变形范围内,横向应变εy和纵向应变εx成正比关系,这一比值称为材料的泊松比,一般以μ表示,即
εy μ=εx
实验时,如同时测出纵向应变和横向应变,则可由上式计算出泊松比μ。 (5.6-4)
三.实验设备、仪器及试件
材料试验机,静态电阻应变仪,游标卡尺。
采用平板试件,试件形状尺寸及贴片方位如图5.6-1所示。
图5.6-1平板试件布片示意图
四.实验方法与步骤
1.用游标卡尺测量试件中间的截面积尺寸;
2.在试件中间沿纵向及横向分别贴两个电阻应变片,同样在另一边对称的贴两个电阻应变片;选取与试件相同材料的补偿块上贴温度补偿片;
3.计算最大载荷,选择材料试验机的载荷量程范围,并确定分级加载的载荷量;
4.安装试件夹于试验机的上夹头,把工作片及补偿片接至电阻应变仪;
5.载荷调零,夹紧下夹头,开始加载。每加一次载荷,记录各测点的应变值;
6.将测试结果代入有关公式进行计算,求出E,μ。
五.实验报告要求
包括实验名称,实验目的,试件尺寸,实验记录及结果,绘制F-Δl关系曲线,机器、仪器名称、型号和量程;回答思考题中提出的问题。
六.思考与讨论
1.怎样验证虎克定律?
2.为何沿试件纵向轴线方向和横向两面各贴两片电阻应变片?
范文四:弹性模量应用
弹性模量在耐火材料中的应用
(1) 耐火材料杨氏模量与温度的关系
在本次试验中,分别选用了杨氏模量在10~200GPa范围内的耐火材料进行高温杨氏模量试验,结果如图1。
图1 空气气氛下不同耐火材料杨氏模量与温度的关系
图1显示,随着温度的升高,不同材质的试样均有不同程度的变化,如碳化硅质制品、刚玉浇注料均随温度的升高而降低,但降低幅度有所不同。原因在于氮化硅结合碳化硅制品中氮化硅基质热膨胀系数为2.75×10-6/℃、碳化硅骨料为4.7×10-7/℃,基质与颗粒之间存在很少热应力失配裂纹,故在升温过程中模量变化较小,但1300℃后由于空气的氧化导致了加速了模量的降低;刚玉质浇注料由于硅灰、水泥的加入形成CaO-Al2O3-SiO2体系,随温度的升高出现弹塑性变化,导致模量的逐渐降低;高铝砖、刚玉-莫来石制品则随温度的升高而升高,原因在于颗粒和基质之间的热应力失配导致的微裂纹的存在,使模量随温度升高而升高,当升至一定温度后裂纹完全弥合使得模量增加缓和。
(2) 高温杨氏模量与抗折强度的研究
本次试验对刚玉-莫来石制品的高温杨氏模量及高温抗折强度进行了测试,其结果如图2、图3,其中升温速度为5℃/min,降温过程为自然降温。
图中显示,在升温过程中,材料的杨氏模量和抗折强度先缓慢增加,1000℃后明显增加;自然降温过程中模量和强度增大,到一定温度后,杨氏模量和抗折强度均大幅降低。刚玉-莫来石为典型的复合材料存在热失配,在冷却状态下材料中存在较多的失配裂纹,随着温度的升高,骨料与基质间的微裂纹逐渐弥合,材料表现为强度和模量升高,从图5可以看出当温度高于1400℃时弹性模量有下降的趋势,这是由于1400℃材料中产生少量玻璃相导致材料的塑性增强,模量随之下降。自然冷却开始时,材料的模量与强度均有较高幅度的提高,这是由于冷却时表面温度低,试样内部温度高,试样中心部位表现为压
应力,整体表现为处于受压缩状态,这种变化显然是由于热应力导致的。从升温与降温过程的数据对比来看,弹性模量与强度数据能够实现较高的线性对应。
[6]
图2 刚玉-莫来石制品杨氏模量与温度的关系 图3 刚玉-莫来石制品抗折强度与温度的关系
(3) 材料烧结过程的分析判断[1]
对中钢洛耐院刚玉-莫来石坯体进行烧结过程模量测试,测试结果图4所示。图4显示,随温度的升高,材料烧结过程中模量出现先增加,后降低,1200℃出现降低趋势。分析器原因主要是:800℃以下主要是结合剂的排出过程,随着结合剂排出,材料的临时结合强度下降;在第二阶段,以硅微粉和粘土为主导的烧结过程出现,表现的为材料的致密化;第三阶段温度高于1200℃时氧化铝与硅微粉的的莫来石化反应开始,莫来石化是膨胀反应,模量随之下降。因该曲线能够充分揭示刚玉-莫来石材料先烧结后莫来石化的过程。
图4 刚玉莫来石棚板烧结过程中的弹性模量与温度测试结果
(4) 弹性模量与热震性的关系
图5为常温下不同添加剂含量的刚玉质浇注料在1100℃后水冷情况下杨氏模量保持率与热震次数的关系。图中所示,第一次热震杨氏模量保持率急剧下降,随着热震次数的增加,保持率的变化趋向缓和。原因在于刚玉质浇注料的热震性较差,第一次水冷热震后,材料内部将产生大量的微裂纹,导致杨氏模量的急剧降低,随着热震次数的增加,裂纹的产生或者扩展将逐渐减缓,从而使模量的保持率逐步减缓。另外,添加剂的含量对其杨氏模量的保持率影响不尽相同,可以改善模量的降低。添加剂含量的
变化对材料杨氏模量的影响程度不同,过多或过少的添加剂对材料的杨氏模量保持率影响不同,其中10%的添加剂含量材料杨氏模量保持率影响较小。
图5 刚玉浇注料的杨氏模量与热震次数的关系
(4) 材料内部缺陷的评价
耐火制品在配料、成型或烧结过程中,由于控制不当可能使制品产生缺陷,或发生层裂现象。 本次试验主要对刚玉-莫来石制品内部均质性进行了初步判断,如图6
所示。
(a) 均质试样 (b)非均质试样
图6 均质和非均质材料的频谱和切面图
图6中的频谱图显示,在测试过程中多数试样均为主单峰显示,而有少数会出现多个波峰。分别将具有单峰或多个波峰的试样沿厚度方向切开,如图6切面图所示。波峰单一的试样切面结构均匀,而出现多个波峰的试样切面有明显的裂纹和层裂,原因在于当激振试样表面时,在试样内产生应力波,当该应力波在试样内遇到波阻抗差异界面即试样内部缺陷或试样另一表面时,将产生反射波,接收这种反射波并进行快速傅里叶变换(FFT)可得到其频谱图,频谱图上突出的峰值就是应力波在试样内部缺陷或试样表面的反射形成的,出现多个明显波峰将说明试样不均质,有内部缺陷,而出现单个波峰时则说明试样内部均匀,仅在试样表面发生反射。总之,通过频谱图的波峰可直观评价材料内部的均匀性,是否存在较大的缺陷。 [2]
范文五:弹性模量泊松比
拉伸试验中得到的屈服极限бb和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面
收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结
构中,材料弹性模量E的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹
性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。要想提高零件的刚度E ,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此,构件的理论分析和设计计算来说,弹性模量E是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
弹性模量(E)和泊松比(μ)都是表征材料力学性能的重要参数。
测量材料的弹性模量、泊松比,常用的方法是利用拉伸实验,在弹性范围内的确定载荷P(ζ=P/A,A为截面积)下把应变ε测出,这样描出应力—应变图其直线的斜率即为弹性模量E。 同时根据μ,ε1/ε2得出泊松比,在拉伸实验中,ε1是横向变形,ε2是纵向变形。
实验三 材料弹性模量E和泊松比μ的测定实验 一、实验目的
1、测定常用金属材料的弹性模量E和泊松比μ。
、验证胡克(Hooke)定律。 2
二、实验仪器设备和工具
1、组合实验台中拉伸装置
2、XL2118系列力,应变综合参数测试仪
三、实验原理和方法
试件采用矩形截面试件,电阻应变片布片方式如图3-1。在试件中央截面上,沿前后两面的轴线方向分别对称的贴一对轴向应变片R1、R1ˊ和一对横向应变片R2、R2ˊ,以测量轴向应变ε和横向应变εˊ。
P P
R1 R1ˊ R1 R R
R2 R2ˊ R2
b h
补偿块
P P
图 3-1 拉伸试件及布片图
1、弹性模量E的测定
由于实验装置和安装初始状态的不稳定性,拉伸曲线的初始阶段往往是非线性的。为了尽可能减小测量误差,实验宜从一初载荷PP(0),开始,采用增量00
法,分级加载,分别测量在各相同载荷增量作用下,产生的应变增量,并,P,,求出的平均值。设试件初始横截面面积为,又因,则有 A,,,LL,,0
,P ,E,,A0
上式即为增量法测E的计算公式。
式中 — 试件截面面积 — 轴向应变增量的平均值 A ,,0
组桥方式采用1/4桥单臂测量方式,应变片连接见图3-2。
B
R R 1
工作片 Uab
A C
补偿片
R R 34
机内电阻 D
E
图3-2 1/4桥连接方式
实验时,在一定载荷条件下,分别对前、后两枚轴向应变片进行单片测量,
'(),,,11并取其平均值。显然代表载荷P作用下试件的实际应变量。而且,,,2
前后两片应变片可以相互抵消偏心弯曲引起的测量误差。
2、泊松比μ的测定
利用试件上的横向应变片和纵向应变片合理组桥,为了尽可能减小测量误差,实验宜从一初载荷开始,采用增量法,分级加载,分别测量在各PP(0),00
相同载荷增量?P作用下,横向应变增量和纵向应变增量。求出平均值,,,,,,按定义
,,',, ,,
便可求得泊松比μ。
四、实验步骤
1、明确试件尺寸的基本尺寸,宽30mm,厚5mm。
2、调整好实验加载装置。
3、按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作
状态。
4、均匀缓慢加载至初载荷P,记下各点应变的初始读数;然后分级等增量0
加载,每增加一级载荷,依次记录各点电阻应变片的应变值,直到最终载荷。
将实验记录填入实验报告
5、作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现
场,将所用仪器设备复原,实验资料交指导教师检查签字。
,E材料弹性模量和泊松比的测定 弹性模量和泊松比是各种材料的基本力学参数,测试工作十分重要,测试方法也E,
很多,如杠杆引伸仪法、千分表法、电测法等。本节介绍电测法。 一、实验目的
1.了解材料弹性常数、的定义。 E,
2.掌握测定材料弹性常数、的实验方法。 E,
3.了解电阻应变测试方法的基本原理和步骤。
4.验证虎克定律。
5.学习最小二乘法处理实验数据。
二、实验设备
1(TS3861型静态数字应变仪一台;
2(NH-10型多功能组合实验架一台;
3.拉伸试件一根;
4.温度补偿块一块;
5.游标卡尺。
三、实验原理和方法
弹性模量是材料拉伸时应力应变成线形比例范围内应力与应变之比。材料在比例极限内
服从虎克定律,其关系为:
, E,
,
F ,,A
,,, ,,
HT试件的材料为钢,宽和厚均由实际测量得出,形状为亚铃型扁试件如图2-17,应
K变片的=2.08。实验时利用NH-3型多功能组合实验架对试件施加轴向拉力,利用应变片
,测出试件的轴向应变和横向应变,利用?式计算出试件的轴向应力。在测量轴向应变,,
,时,应将正反两面的轴向应变片接成全桥对臂测量线路。利用式就可得到材料的,EE,
,
,,,利用式得到材料的泊松比。 ,,,
-17 图2
四、实验步骤
1.实验准备
检查试件及应变片和应变仪是否正常。
2.拟定加载方案
根据材料手册,拟定加载方案。(推荐方法: P=100N,?P =300N,P=1300N)。 0MAX3.组成测量电桥
测定弹性模量E,以前后两面轴线上的轴向应变片与温度补偿应变片组成对臂全桥接
线方式进行测量如图2-18a所示,测定泊松比,为了消除初曲率和加载可能存在的偏心,
引起的弯曲影响,同样采用对臂全桥接线方式将两个轴向应变片和两个纵向应变片分别组成
,两个桥路进行测量,测出试件的轴向应变和横向应变。如图2-18a、b所示。 ,,
4.进行实验
5.检查实验数据
6.自主设计数据记录表
(b)(a)
图2-18 五、实验结果处理
1.利用最小二乘法拟合材料的弹性常数E和μ。 2.检查数据
本节思考题
1.本实验为什么采用全桥接线的对臂测量方法, 2.如果应变片贴的不准或试件装夹不好,会对实验结果有什么影响,