范文一:电路拓扑是什么意思-电路拓扑结构
电路拓扑是什么意思?电路拓扑结构 由于拓扑约束与元件的特性无关,在研究拓扑约束时,我们可以将电路中的元件用线段代替,画成一些由线段组成的图,如图1(a)中的电路图画成为图1(b)的拓扑图。
我们称图1(b)为图(a)所示电路的“图”,图中的各线段称为支路,线段的连接点称为节点。因此,图的确切定义是:一组节点与支路的集合,其中每一支路的两端都终止在节点上。在上图中,a,b,c,d,e,f,g,h为支路,1,2,3,4,5为节点。
在图中构成闭合一个闭合路径所需的数量最少的支路的集合称为回路,在回路中去掉一个支路则不能构成闭合路径。例如图2(a)所示的支路集合(a,b,c,d), (d,e,h) 和 (g,h) 均为回路。在一个图中可以有许多回路。如果回路中不包围其他支路,则称这样的回路为
网孔。在图2(b)中有4个网孔,它们是支路集合(a,b,c,d),(c,e,f),(d,e,g)
和(g,h)。
如果在图上标明各支路电流(或电压)的参考方向(通
常采用电压和电流的一致参考方向来同时表示电压和电流),这样的
图则称为有向图,如图3所示。
范文二:测绘中的拓扑是什么意思
测绘中的拓扑是什么意思
拓扑本来是一个数学概念, 在 GIS 技术中, 是特指对电子地图中点、 线、面等等要素之间关系的一种描述,比如通过拓扑关系可以找到两个 临近的多边形 (地块 ) ,还可以通过拓扑关系找到两地之间的最短路径 (线 段链接 ) 等等。拓扑概念是 GIS 技术的重要基本概念之一。
拓扑关系是在语义层次上最重要的一种空间关系, 拓扑推理的研究 主要有两类基本的方法:基于区域连接的 RCC 方法和基于点集的“ n-交 集”模型。 GIS 空间推理的关键问题是如何利用存贮在数据库中的基本 数据信息并结合相关的空间约束来获取所需的未知空间信息。而对拓扑 关系的推理,是 GIS 空间推理、查询与分析的基础,直接影响 GIS 的发 展与应用。结合人类的认知模式,并结合时空、模糊、层次等拓扑关系 来进行 GIS 的空间推理,使模型的描述方式更符合人们对拓扑信息的表 达和认知方式,并走向网络化和大众化,是空间拓扑推理的发展趋势。
范文三:什么是拓扑结构
什么是拓扑结构
由:成都宽带安装 www.kuandai10086.com 收集整理jnwc发布
互联网时代已经到来了,小编为你科普一下网络相关基础知识《什么是拓扑结构》,让你更快融入互联网时代。
首先我们来解释一下拓扑的含义,所谓“拓扑”就是把实体抽象成与其大小、形状无关的“点”,而把连接实体的线路抽象成“线”,进而以图的形式来表示这些点与线之间关系的方法,其目的在于研究这些点、线之间的相连关系。表示点和线之间关系的图被称为拓扑结构图。拓扑结构与几何结构属于两个不同的数学概念。在几何结构中,
我们要考察的是点、线之间的位置关系,或者说几何结构强调的是点与线所构成的形状及大小。如梯形、正方形、平行四边形及圆都属于不同的几何结构,但从拓扑结构的角度去看,由于点、线间的连接关系相同,从而具有相同的拓扑结构即环型结构。也就是说,不同的几何结构可能具有相同的拓扑结构。
类似地,在计算机网络中,我们把计算机、终端、通信处理机等设备抽象成点,把连接这些设备的通信线路抽象成线,并将由这些点和线所构成的拓扑称为网络拓扑结构。
网络拓扑结构反映出网络的结构关系,它对于网络的性能、可靠性以及建设管理成本等都有着重要的影响,因此网络拓扑结构的设计在整个网络设计中占有十分重要的地位,在网络构建时,网络拓常见的网络拓扑结构
在计算机网络中常见的拓扑结构有总线型、星型、环型、树型和网状型等。
范文四:什么是拓扑变换
什么是拓扑变换
什么是拓扑变换
2011-04-20什么是拓扑变换
拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成"形势几何学"、"连续几何学"、"一对一的连续变换群下的几何学",但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。
拓扑学是几何学的一个分KuGoo支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。
举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形纳兰性德上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。
拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。
但是讨论拓扑等价的概念。比如,在拓扑学里不讨论两个图形全等的概念,
尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。左图的三样东西就是拓扑等价的,换句话讲,就是从拓扑学的角度看,它们是完全一样的。
在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是
拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价。
应该指出,环面不具有这个性质。比如像左图那样,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。
直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。
我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。
拓扑变换的不变性、不变量还有很多,这里不在介绍。
拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。
二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。
因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。本世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究取线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。
拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分
支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。
拓扑学在泛函分析、李群论、微分几何、微分方程额其他许多数学分支中都有广泛的应用。
计算机网络的拓扑结构是引用拓扑学中研究与大小,形状无关的点,线关系的方法。把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。网络的拓扑结构反映出网中个实体的结构关系,是建设计算机网络的第一步,是实现各种网络协议的基础,它对网络的性能,系统的可靠性与通信费用都有重大影响。
?总线拓扑结构是将网络中的所有设备通过相应的硬件接口直接连接到公共总线上,结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可"收听"到。优点:结构简单、布线容易、可靠性较高,易于扩充,是局域网常
总线成为整个网络的瓶采用的拓扑结构。缺点:所有的数据都需经过总线传送,
颈;出现故障诊断较为困难。最著名的总线拓扑结构是以太网(Ethernet)。
?星型拓扑结构每个结点都由一条单独的通信线路与中心结点连结。优点:结构简单、容易实现、便于管理,连接点的故障容易监测和排除。缺点:中心结点是全网络的可靠瓶颈,中心结点出现故障会导致网络的瘫痪。
?环形拓扑结构各结点通过通信线路组成闭合回路,环中数据只能单向传输。优点:结构简单、蓉以是线,适合使用光纤,传输距离远,传输延迟确定。缺点:环网中的每个结点均成为网络可靠性的瓶颈,任意结点出现故障都会造成网络瘫痪,另外故障诊断也较困难。最著名的环形拓扑结构网络是令牌环网(Token Ring)
?树型拓扑结构是一种层次结构,结点按层次连结,信息交换主要在上下结点之间进行,相邻结点或同层结点之间一般不进行数据交换。优点:连结简单,维护方便,适用于汇集信息的应用要求。缺点:资源共享能力较低,可靠性不高,任何一个工作站或链路的故障都会影响整个网络的运行。
?网状拓扑结构又称作无规则结构,结点之间的联结是任意的,没有规律。优点:系统可靠性高,比较容易扩展,但是结构复杂,每一结点都与多点进行连结,因此必须采用路由算法和流量控制方法。目前广域网基本上采用网状拓扑结构。
历史上的今天:
年终奖报税2011-04-20说说做平面设计工作的感受.有工作经验的进2011-04-20
范文五:什么是拓扑结构
拓扑(Topology)是将各种物体的位置表示成抽象位置。在网络中,拓扑形象地描述了网络的安排和配置,包括各种结点和结点的相互关系。拓扑不关心事物的细节也不在乎什么相互的比例关系,只将讨论范围内的事物之间的相互关系表示出来,将这些事物之间的关系通过图表示出来。网络中的计算机等设备要实现互联,就需要以一定的结构方式进行连接,这种连接方式就叫做
拓扑图给出网络服务器、工作站的网络配置和相互间的连接,它的结构主要有星型结构、总线结构、树型结构、网状结构、蜂窝状结构、分布式结构等。
星型结构
星型结构是指各工作站以星型方式连接成网。网络有中央节点,其他节点(工作站、服务器)都与中央节点直接相连,这种结构以中央节点为中心,因此又称为集中式网络。它具有如下特点:结构简单,便于管理;控制简单,便于建网;网络延迟时间较小,传输误差较低。但缺点也是明显的:成本高、可靠性较低、资源共享能力也较差。
环型结构
环型结构由网络中若干节点通过点到点的链路首尾相连形成一个闭合的环,这种结构使公共传输电缆组成环型连接,数据在环路中沿着一个方向在各个节点间传输,信息从一个节点传到另一个节点。
环型结构具有如下特点:信息流在网中是沿着固定方向流动的,两个节点仅有一条道路,故简化了路径选择的控制;环路上各节点都是自举控制,故控制软件简单;由于信息源在环路中是串行地穿过各个节点,当环中节点过多时,势必影响信息传输速率,使网络的响应时间延长;环路是封闭的,不便于扩充;可靠性低,一个节点故障,将会造成全网瘫痪;维护难,对分支节点故障定位较难。
总线型结构
总线结构是指各工作站和服务器均挂在一条总线上,各工作站地位平等,无中心节点控制,公用总线上的信息多以基带形式串行传递,其传递方向总是从发送信息的节点开始向两端扩散,如同广播电台发射的信息一样,因此又称广播式计算机网络。各节点在接受信息时都进行地址检查,看是否与自己的工作站地址相符,相符则接收网上的信息。
总线型结构的网络特点如下:结构简单,可扩充性好。当需要增加节点时,只需要在总线上增加一个分支接口便可与分支节点相连,当总线负载不允许时还可以扩充总线;使用的电缆少,且安装容易;使用的设备相对简单,可靠性高;维护难,分支节点故障查找难。 分布式结构
分布式结构的网络是将分布在不同地点的计算机通过线路互连起来的一种网络形式,分布式结构的网络具有如下特点:由于采用分散控制,即使整个网络中的某个局部出现故障,也不会影响全网的操作,因而具有很高的可靠性;网中的路径选择最短路径算法,故网上延迟时间少,传输速率高,但控制复杂;各个节点间均可以直接建立数据链路,信息流程最短;便于全网范围内的资源共享。缺点为连接线路用电缆长,造价高;网络管理软件复杂;报文分组交换、路径选择、流向控制复杂;在一般局域网中不采用这种结构。
树型结构
树型结构是分级的集中控制式网络,与星型相比,它的通信线路总长度短,成本较低,节点易于扩充,寻找路径比较方便,但除了叶节点及其相连的线路外,任一节点或其相连的线路故障都会使系统受到影响。
网状拓扑结构
在网状拓扑结构中,网络的每台设备之间均有点到点的链路连接,这种连接不经济,只有每个站点都要频繁发送信息时才使用这种方法。它的安装也复杂,但系统可靠性高,容错能力强。有时也称为分布式结构。
蜂窝拓扑结构
蜂窝拓扑结构是无线局域网中常用的结构。它以无线传输介质(微波、卫星、红外等)点到点和多点传输为特征,是一种无线网,适用于城市网、校园网、企业网。
在计算机网络中还有其他类型的拓扑结构,如总线型与星型混合。总线型与环型混合连接的网络。在局域网中,使用最多的是总线型和星型结构。
转载请注明出处范文大全网 » 电路拓扑是什么意思-电路拓扑