范文一:运筹学实验心得
运筹学实验心得
简单的来说,运筹学就是通过数学模型来安排物资,它是一门研究如何有效的组织和管理人机系统的科学,它对于我们逻辑思维能力要求是很高的。从提出问题,分析建摸到求解到方案对逻辑思维的严密性也是一种考验,但它与我们经济管理类专业的学生以后走上工作岗位是息息相关的。
运筹学应用分析,试验,量化的方法,对经济管理系统中人财物等有限资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。对经济问题的研究,在运筹学中,就是建立这个问题的数学和模拟的模型。建立模型是运筹学方法的精髓。通常的建模可以分为两大步:分析与表述问题,建立并求解模型。通过本学期数次的实验操作,我们也可以看到正是对这两大步骤的诠释和演绎。
运筹学模型的建立与求解,是对实际问题的概括与提炼,是对实际问题的数学解答。而通过本次的实验,我也深刻的体会到了这一点。将错综复杂的实例问题抽象概括成数学数字,再将其按要求进行求解得出结果,当然还有对结果的检验与分析也是不可少的。在这一系列的操作过程中,不仅可以体会到数学问题求解的严谨和规范,同时也有对运筹学解决问题的喜悦。
通过一个学期的实验学习,我对有关运筹学建模问题有了更深刻的认识和把握;对运筹学的有关知识点也有了进一步的学习和掌握,下面是我的一些实验心得和体会。
对于这种比较难偏理的学科来说确实是的,而且往往老师也很难把这么复杂的又与实际生活联系的我们又没亲身经历过的问题分析的比较透彻,所以很多同学从一开始听不懂就放弃了。但对于上课认真听讲,课后认真复习并且做相应习题的同学来说,学好它也不是一件难事,应该比较有把握的,毕竟题目是百变不离其中的,这也是这门课的好处。
对我而言学习运筹学,并没有把它当作是一件难事,以平常心对待。它更多的是联系实际,对一步步的推论推理过程,我个人认为是比较有挑战性的,
所以我也用心学好它。其实学习这门课时,大家压力还是比较大的,老担心期末会挂,至少我身边有很多同学是这样的,因为一打开书就可以看到很多复杂的图形,一个个步骤也更是吓人,有的题目甚至要解好几页。就因为这样,我课上就比较注重听讲,尽量把每道题目的关键都听懂,有的不是很清楚的及时向人问完并记下要点,这样也方便自己课后仔细想这道题的解法。因为这门不象其他课上课不听还可以蒙混过关,对于一连串的解题思路只有经过分析才会明白,因为一点不明白有可能导致整个题目前功尽弃。在平时做作业时我会认真分析老师提供给我们的答案的解题思路,在不懂的地方记一下,抽时间问老师问同学,以便在能掌握好所学内容。因为考试的时候还是要求我们把自己的思路、步骤写清楚。毕竟这门课程学习并不是只为了考试,它与以后生活也是息息相关的。
总之,对于这门课千万不能被书厚、人家说很难等外部因素所影响,以至放弃学习,要知道不同的科目对于不同的人来说是不一样的,也许你刚好会擅长这门课。当然这是次要的,我只是想说明不要怕这门课,其实学好它很简单,只要上课思路跟着老师走,下课多复习,把不懂的弄懂,作好相应的习题,要取得好成绩并非不可能。同样对于数学基础不是很好的同学来说,千万不要害怕,多听,多想,多问是最好的解决方法。
在一学期为数不多的实验过程中,不仅对运筹学的有关知识有了进一步的掌握,同时对在自己的计算机操作水准也有了很大的提高。课程的学习很快过去,但它对我们掌握运筹学建模问题的要求却并没有随课程的结束而结束。因此在以后的学习当中我们更应该时刻温习,不时巩固,以达到知新的效果。以上就是我的一些感悟,希望可以对自己有所帮助。
范文二:运筹学实验心得体会
运筹学实验心得体会
篇一:学习运筹学的心得体会
《管理运筹学》的体会
相对于我们的教材,这本书从直观、明了的角度将运筹学定义为:“通过构建、求解数学模型,规划、优化有限资源的合理利用,为科学决策提供量化一句的系统知识体系。”即:应用分析、试验、量化的方法,对实际生活中人、财、物等有限资源进行统筹安排。 线性规划是运筹学的一个重要分支。线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。其数学模型有目标函数和约束条件组成。解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。 每一个线性规划问题都有和它伴随的另一个问题,若一个问题称为原问题,则另一个称为其对偶问题,原问题和对偶问题有着非常密切的关系,以至于可以根据一个问题的最优解,得出另一个问题的最优解的全部信息。
灵敏度分析:分析在线性规划问题中,一个或几个参数的变化对最优解的影响问题。可以分析目标函数中变量系数、约束条件的右端项、增加一个约束变量、增加一个约束条件、约束条件的系数矩阵中的参数值等的变化。
运输问题是解决多个产地和多个销地之间的同品种物品的规划
问题。根据运输问题的独特性,一般采用一种简单而有效的方法:表上作业法。表上作业法先找出运输问题的基可行解,方法有:最小元素法、西北角法、沃格尔法。其中沃格尔法得出的解最接近最优解。然后利用闭回路法或对偶变量法对得到解进行最优性判别。
整数规划是解决决策变量只能取整数的规划问题,整数规划的解法有割平面法和分支定界法。整数规划中的0-1规划整数问题是一个非常有用的方法。在实际问题中,该方法能够解决很多问题。
通过对运筹学的学习我掌握运筹学的基本概念、基本原理、基本方法和解题技巧,对于一些简单的问题可以根据实际问题建立运筹学模型及求解模型。运筹学对我们以后的生活也讲有不小的影响,将运筹学运用到实际问题上去,学以致用。以上就是我对本学期学习运筹学的总结和体会。
篇二:运筹学实验报告
成都理工大学管理科学学院
教学实验报告(半期考试) 2014,2015学年第 二 学期
一、实验过程与步骤:
步骤1:新建Excel表,根据表二和表三分别绘制轿车到达间隔时间和洗车服务时间,如图1。
图 1统计顾客到达速率
步骤2:模拟从A21开始,模拟数据区域为A21:K1120 。在
A21:A1120列,依次编号为1到1100。分别选中24-117、123-1118行,点击鼠标右键将其“隐藏”,便于之后运算,否则表太大不好操作。共模拟1100辆轿车,假设从第101辆轿车开始系统进入稳态,则前面100辆轿车的数据不作为计算范围。
步骤3:在B21:B1120列每一格,分别表示1100辆轿车两两之间到达的间隔时间。在单元格B21中输入公式:=Vlookup(rand(),A$7:C$13,6),完毕按回车键。这个公式的意思是:由rand()产生一个[0,1]之间的随机数,将它与A$7:C$20区域第一列(即A7:A20)各单元格数据相比较,如果它大于或等于某单元格数据而小于同列下一行的数据,excel就会记录下某单元格所在的行数,然后返回同行第3列的数据。
步骤4:在F21:F1120列,比照(3)进行类似操作。在单元格F21中输入公式:=Vlookup(rand(),E$7:G$14,4),按回车键。输入完毕,将F21单元格数据拖至1120行。这就得
到了1100辆轿车每一辆服务时间的随机数据。泊位数在B19输入,等于3。以上两步的操作结果见图2所示。
图 2每辆车服务时间随机数的生成
步骤5:在C21单元格,输入:=0+B21,在C21单元格,输入:=C21+B22(注:从上一辆轿车到达的时刻开始计时,则第二辆轿车到达的时刻就是C21+B22小时末。以后以此推类)。将C21单元格拖动到C1120。结果见图3所示。
图 3 1100辆轿车到点时刻的计算
步骤6:在D21单元格,输入:=C21;在E21单元格,输入:= D21 -C21。在G21单元格,输入:=D25+F25。在H25单元格,输入:=G21-C21。分别将E21、G21、H21的数据拖动至E1120、
G1120、H1120。结果见图4所示。
图 4 1100辆车等待时间、完成时刻、在车行逗留时间的计算
步骤7:在I21单元格,输入:=IF(RAND()1/$B$19,0,G21);在J21单元格,输入:
=IF(SUM($I21:I21)0,0,IF(AND(RAND()1/$B$19,COLUMN(J21)-8
$B$19),0,$G21)) 。这表示在三个洗车位都空闲时,随机抽取洗车位,第一辆车到车行时,就属于这种情形。这里的“开始空闲时刻”是指该车服务完毕后的空闲时刻,而不是该车到达之前三个洗车位都空闲的状况。因为1/$B$19=1/2,RAND()1/2的概率即该洗车位被弃用概率为50%, 所以I21中公式的含义是:以50%的概率选择洗车位1进行服务。一旦选择了洗车位1,则第一辆车的完工
篇三:学习运筹学的体会与心得
学习运筹学的总结与心得体会
古人云“夫运筹帷幄之中,决胜千里之外”,怀着对运筹学的憧憬与崇拜之情,这学期我选择了运筹学这门课程。通过学习,我知道了运筹学是一门具有多科学交叉特点的边缘科学,是一门以数学为主要工具,寻求各种问题最优方案的优化学科。
经过一个学期的学习,我们应该熟练地掌握、运用运筹学的精
髓,用运筹学的思维思考问题,即:应用分析、试验、量化的方法,对实际生活中的人力、财力、物力等有限资源进行合理的统筹安排。本着这样的心态,在本学期运筹学课程将结束之际,我对本学期所学知识作出如下总结。
一、线性规划
线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。而线性规划问题指的是在一组线性等式或不等式的约束下,求解一个线性函数的最大或最小值的问题。其数学模型有目标函数和约束条件组成。
解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。解决线性规划问题的主要方法有:图解法、单纯型法、两阶段法、对偶单纯型法、计算机软件求解等方法。简单的设计2个变量的线性规划问题可以直接运用图解法得到。但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。单纯形法的发展很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。将所得的量的值代入目标函数,得出最优值。
利用单纯形表我们可以(1)直接找出基本可行解与对应的目标函数值;(2)通过检验数判断原问题解的性质以及是否为最优解。
每一个线性规划问题都有和它伴随的另一个问题,若一个问题
称为原问题,则另一个称为其对偶问题,原问题和对偶问题有着非常密切的关系,以至于可以根据一个问题的最优解,得出另一个问题的最优解的全部信息。
对偶问题有:对称形式下的对偶问题和非对称形式下的对偶问题。非对称形式下的对偶问题需要将原问题变形为标准形式,然后找出标准形式的对偶问题。因为对偶问题存在特殊的基本性质,所以我们在解决实际问题比较困难时可以将其转化成其对偶问题进行求解。
在解决线性规划问题时,我们往往会在求出最优解后,对问题进行灵敏度分
析,即分析在线性规划问题中,一个或几个参数的变化对最优解产生的影响。具体可以分析目标函数中变俩个系数、约束条件的右端项,增加一个约束变量、增加一个约束条件、约束条件的系数矩阵中的参数值等的变化。
下面我将通过实例分析来阐述线性规划问题在实际生活中的应用。
套裁下料问题:
某工厂要做100套钢架,每套用长为2.9 m,2.1 m,1.5 m的圆钢各一根。已知原料每根长7.4 m,问:应如何下料,可使所用原料最省,
通过问题的分析我们共可设计下列5 种下料方案,见下表
设 x1,x2,x3,x4,x5 分别为上面 5 种方案下料的原材料根数。
这样我们建立如下的数学模型。
目标函数: min z=7.4x1+7.3x2+7.2x3+7.1x4+6.6x5
约束条件: s. t. X1+2x2+ x4=100
LP(?): 2x3+2x4+x5=100
3x1+x2+2x3+3x5=100
xi?0 (i=1,2,3,4,5)
运用MATLAB软件计算得出最优下料方案:按方案1下料30根;按方案2下料10根;按方案4下料50根。
通过灵敏度的分析,我们可以得出影子价格分析情况:
每增加一根2.9m的圆钢,原材料总用料需要增加3根
每增加一根2.1m的圆钢,原材料总用料需要增加2根
每增加一根1.5m的圆钢,原材料总用料需要增加1根
像这一类的线性规划问题在我们的生活中常见的还有投资问题、人力资源分配的问题;生产计划的问题;配料问题等等。因此,学好线性规划在我们生活中是十分有用的。
线性规划是这门课程初期的教学内容,因此对于这个知识点的学习还是比较认真的。但是在学习过程中一些定理的证明较为繁琐复杂,比较难以理解。对此,需要在课后好好复习,认真消化课程内容,才能真正理解,熟练应用。
二、整数规划
整数规划是解决决策变量只能取整数的规划问题,整数规划的解法有割平面法和分支定界法。整数规划中的0-1规划整数问题
是一个非常有用的方法。在实际问题中,该方法能够解决很多问题,其中指派问题是0-1整数规划问题的一个特例。0-1整数规划的解决方法有枚举法和隐枚举法。
这方面的知识,在建模课上老师已经讲授。要注意的是,MATLAB软件的应用与如何合理地将现实问题转化为0-1规划这一关键点。
三、非线性规划
非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。对实际规划问题作定量分析,必须建立数学模型。建立数学模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,称之为目标函数。然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,称之为约束条件。
在解决非线性规划问题的方法时,我们主要学习了:凸函数与凸规划求解法、一维搜索法、Newton法、无约束最优化法、最速下降法、共轭梯度法、惩罚函数法等等。
在这个阶段的学习过程中,需要反思的是,由于课时安排紧张,对于课程的内容并没有很深入地了解,只是了解了非线性规划的解决方法。在解决实际问题的应用中,还需要加强对给种方法的理解与掌握。
四、图论与网络分析
这一章我们主要学习了图论有关知识,学习了如何利用图来解决最小数问题、最短有向路问题、最大流问题与最小费用流问题。
在这章的学习中,通过直观的图,我们将生活中的运输问题、网络规划问题
化成简单的图,体会回到了数学的神奇与强大应用性。
五、网络计划图、排序问题与统筹规划问题
在这三章的中,我们主要学习了如何利用图来解决生产生活中的人力、物力、财力等资源以及工作时间限制下的生产加工流程的统筹规划。通过做网络图,我们可以清晰地求解出每个问题的合理安排法方法与解决问题的最少时间,最优计划。使我们深入解了了运筹学在实际生活中的应用。
经过一个学期的学习,我更加确定当初选择运筹学这门课程是个正确的选择。运筹学不是单纯的一门数学课程,而是各种生活生产实际问题的结合。它让我知道了数学不仅仅是理论的学术问题,更是具体的生活问题。而对于个人,我应该更好地学习如何将学过的知识与实际生活相结合,将运筹学运用到实际问题上去,学以致用,这样才是真正地学到知识,掌握知识。
以上就是我对本学期学习运筹学的总结与心得体会。
数学091陈峥 学号:09101107
范文三:运筹学实验报告心得
运筹学实验报告心得
运筹学实验报告
实验一:线性规划问题
1、实验目的:
?学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。 ?掌握利用计算机软件求解线性规划最优解的方法。 2、实验任务
?结合已学过的理论知识,建立正确的数学模型; ?应用运筹学软件求解数学模型的最优解
?解读计算机运行结果,结合所学知识给出文字定性结论 3、实验仪器设备:计算机 4、实验步骤:
(1)在主菜单中选择线性规划模型,在屏幕上就会出现线性规划页面,如图所示。 (2)在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,
输入目标函数及约束条件的各变量的系数和b值,并选择好“?”、“?”或“=”号,如图所示。
(3)当约束条件输入完毕后,请点击“解决”按钮,屏幕上将显现线性规划问题的
结果,如图所示。 例题一:
例题二:
例题三:
例题四:
例题五
5、试验体会或心得
运筹学是一门实用的学科,学习运筹学,结合生活实际运用运筹学,我们可以将资
源最大化利用。学习理论的目的就是为了解决实际问题。线性规划的理论对我们的实际生活指导意义很大。当我们遇到一个问题,需要认真考察该问题。如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。 线性规划指的是在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。其数学模型有目标函数和约束条件组成。一个问题要满足一下条件时才能归结为线性规划的模型:?要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;?为达到这个目标存在很多种方案;?要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。所以,通过这次实验,不仅对运筹学的有关知识有了进一步的掌握,同时对在自己的计算机操作水准也有了很大的提高。这次实验让我懂得了运筹学在电脑的应用,让我对运输与数学相结合的应用理解更深了。
篇二:运筹学实验报告
实验一:线性规划问题
1、实验目的:
(1)学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型
的特点。
(2)掌握利用计算机软件求解线性规划最优解的方法。
2、实验任务:
(1)结合已学过的理论知识,建立正确的数学模型;
(2)应用运筹学软件求解数学模型的最优解
(3)解读计算机运行结果,结合所学知识给出文字定性结论
3、实验仪器设备:计算机
4、实验步骤:
步骤一:打开管理运筹学软件,并选择线性规划,显示如下界面:
步骤二:求目标函数值为最小值的唯一最优解,题目为课本上P47习题一1.1(a):
步骤三:求目标函数值为最大值的唯一最优解,此题为P47习题一1.1(c):
步骤四:求目标函数值为最大值有无穷多最优解:
步骤五:求目标函数值为最大值无可行解,题目为课本P47习题一1.1(a):
步骤六:求目标函数值为最大值无界解,此题为课本P47习题一1.1(d)
5、实验心得:
线性规划问题主要要确定决策变量,约束条件,目标函数。其中,决策变量为可控的连续变量,目标函数和约束条件都是线性
的,这类模型为线性规划问题的数学模型。
通过实验,我们学会了除了用笔算的方式求线性规划问题,懂得了用借助计算机求得问题,可以检验我们的计算结果。应该开说,这个试验比较简单,计算过程不复杂,结果简略的可分为五种:最小值的唯一最优解,最大值的唯一最优解,最大值的无界解,最大值的无可行解,最大值的无穷多最优解。应该来说,线性规划问题是整个运筹学最基本、最简单的问题。
篇三:运筹学实验报告书2014
学生实验报告书
2013 ,2014 学年第 二 学期
教学单位: 工商管理 实验课程: 运筹学 实验地点: 经管楼509指导教师:曾自卫 专业班级: 工商1121 学生姓名:000
2014 年 5 月 13 日
实 验 报 告
范文四:运筹学实验学习心得
运筹学实验学习心得:
通过此次运筹学实验,我们小组成员有极大的收获:在一学期为数不多的实验过程中,不仅对运筹学的有关知识有了进一步的掌握,而且学会了通过建立模型解决实际生活中的相关问题。对问题的分析、建模、求解锻炼了我们的思考能力,同时提高了分析、解决问题的能力,也更加了解和熟悉了Excel规划求解的强大功能,提高了我们的计算机应用水平。
同时,我们小组在此次试验中也存在一些不可避免的问题和不足。例如,在分析问题时,设置变量没有清晰的思路;在列约束条件时粗心大意出现差错,导致最终结果的错误从而影响实际问题解决的效果,因此,我们在这方面应该加以注意和改正,在进行建模求解时细心耐心。
除此,我们小组成员也对此门课程提出了一些我们的建议:首先,此门课程是一门有很大实际运用性的学科,故希望黄老师多结合我们实际生活中可能遇到的问题来进行讲解;其次,每次实验课程的时间稍微过长,后面容易出现疲惫,故希望适当减少每次实验课时间而增加实验次数。
最后,课程的学习很快过去,但它对我们掌握运筹学建模问题的要求却并没有随课程的结束而结束。此次实验课的学习提高了我们参加管理模拟决策大赛的技能,为以后的学习和工作打下了坚实的基础,在此感谢黄燕玲老师的细心指导和帮助。
范文五:运筹学实验
哈尔滨工业大学机电工程学院
实 验 报 告
一、实验目的
1) 了解Excel 的基本功能,熟悉界面,掌握基本的操作命令; 2) 熟悉Matlab 编程环境,了解Matlab 的基本功能,掌握基本的编程语言; 3) 用Excel 和Matlab 求解话务排班线性规划问题。 二、实验器材 1) PC 机:20台。
2) Microsoft Excel 软件(具备规划求解工具模块):20用户。 3) Matlab 软件(具备优化工具箱):20用户。 三、实验原理:
话务排班属于线性规划问题,通过对问题建立数学模型,根据Excel 自身特点把数学模型在电子表格中进行清晰的描述,再利用规划求解工具设定相应的约束条件,最终完成对问题的寻优过程,具体可参见1.2;在Matlab 中,根据Matlab 提供的线性规划求解函数,将数学模型转换成线性规划求解函数可传递的数值参数,最终实现对问题的寻优求解过程,具体可参见2中linprog 函数描述和示例。 四、实验内容和步骤:
某寻呼公司雇佣了多名话务员工作,他们每天工作3节,每节3小时,每节开始时间为午夜、凌晨3点钟、凌晨6点钟,上午9点、中午12点,下午3点、6点、9点,为方便话务员上下班,管理层安
排每位话务员每天连续工作3节,根据调查,对于不同的时间,由于业务量不同,需要的话务员的人数也不相同,公司付的薪水也不相同,有关数据如下表所示。
问:如何安排话务员才能保证服务人数,又使总成本最低? 1、建立模型
设x 1为0点开始工作的人数,x 2是3点开始工作的人数,x 3是6点开始工作的人数,x 4.....x 8是21点开始工作的人数。Z 为所支付的总薪水。算出每个时间段的最低需求人数,如x 1+x2+x3为6-9点工作的人数。由题意列出约束方程为:
x 1+ x7+x8≥8 x 1+x2 +x8≥6 x 1+x2+x3 ≥15 x2+x3+x4 ≥20 x3+x4+x5 ≥25 x4+x5+x6 ≥23 x5+x6+x7 ≥18
x 6+x7+x8≥10
xi ≥0(i=1,.....8)
Z=84x1+80x2+70x3+62x4+62x5+66x6+72x7+80x8 用Excel 求解
打开Excel ,选择“Excel 选项”通过“工具”菜单的“加载宏”选项打开“加载宏”对话框来添加“规划求解”。将约束条件的系数矩阵输入Excel 中,如下图所示,然后将目标函数的系数输入约束矩阵下方,最下方为最优解的值,输入“0”或不输入。系数矩阵的右端一列为合计栏,点击合计栏中单元格并在其中输入“=sumproduct(”,用鼠标左键拖动合计栏所在行的系数,选定后输入“,”,然后拖拉选定最下方的空白行,输入“)”,输入“Enter ”。用此方法依次处理整个系数矩阵每一行和目标函数行,合计栏右端输入约束条件右端项,在合计栏和约束条件右端项之间可以输入“≧”符号。
在菜单栏点击“数据”菜单,选择最右端“规划求解”选项,弹出“规划求解参数”对话框,目标单元格选择目标函数系数所在行和合计栏交叉处的单元格,选择求最小值,可变单元格选择解所在行。点击“添加约束条件”按钮,单元格引用位置选择合计那一列,约束关系选择“≧”,约束值选择右端项系数所在列,点击确定。在“选
项”中勾选“采用线性模型”和“假定非负”
Mat lab求解
先在command window 对建立模型中各个参数矩阵进行赋值,同一行数字用空格分开,换行时用分号分开,矩阵用“【】”表示,分别将目标函数系数c ,系数矩阵A ,右端项b 输入,lb 值均取零。输入A 和b 时,原先的正数均加负号后输入;输入完成后加分号,输入“Enter ”,矩阵被储存并在workspace 中显示出来。最后调用线性规划的函数[x,fval]=linprog(c,A,b,[],[],lb);回车,即可得求解结果。
最优解
经上述两中方法计算后均得到:当x 1=4;x 2=2;x 3=9;x 4=9;x 5=8;x 6=6;x 7=4;x 8=0时得到最优解Z min =2864元。
五、Excel 和Matlab 的优劣性比较:
Excel 的界面十分清晰明了但是单元格的输入较多,过程较为繁琐复杂,适合较为简单的问题求解。反观Matlab 的计算过程需要输入的数据较少,但计算过程较像编程界面不够直观,适合较为复杂的问题求解。