范文一:无源滤波电路与有源滤波电路
无源滤波电路与有源滤波电路 一、无源滤波电路一阶滤波电路
无源二阶滤波电路
二阶RC无源滤波电路可获得较陡的衰减斜率,更好的衰减通带以外的频率成分。一般电路设计电路中常采用参数相同的电阻和电容,若要取得更好的滤波效果常采用R1=K*R2,C2=K*C1,,K=10。这样既保证截止频率的一致性,又能错开电容的谐振频率点,起到更好的滤波效果。二、有源滤波电路
压控电压源型滤波电路
二阶压控型高通滤波器
压控带通滤波器
带通滤波器只让某一频段的信号通过,而将此频段外的信号加以抑制或衰减,其理想幅频特性如图:
带通滤波器可由以ω1为截止角频率的高通滤波器和以ω2为截止角频率的低通滤波器串联而成。其组成原理为:
带阻滤波器用来专门抑制某一频段的信号,而让此频段以外的所有信号通过,其理想幅频特性如图:
带阻滤波器可由一个高通滤波器和一个低通滤波器并联而成。或由带通滤波器与一减法器相连而成。
有源滤波器设计有源滤波器的设计主要包括以下四个过程:确定传递函数选择电路结构选择有源器件计算无源元件参数
设计方法: 公式法 图表法计算机辅助设计法和类比法计算机辅助设计法 1、通用EDA软件(multisim7)2、各IC公司的专业滤波器设计软件如:MAXIM公司, Burr-Brown的 filter42 Linear Technology : FilterCAD 3.0集成有源滤波器集成化是电子技术发展的必然趋势。集成有源滤波器主要分为两类:双二阶环滤波器开关电容技术
除了美信公司的集成滤波芯片外,还有美国Linear Technology(凌特)公司生产的通用型(可组合为低通、带
通、高通等)和低通SCF两类。通用型SCF主要有:LTC1059(2阶)、LTC1060(4阶)、LTC1061(6阶)、LTC1064(8阶)等。低通SCF主要有:LTC1062/1063(5阶)、LTC1064(8阶)。
范文二:无源滤波电路和有源滤波电路
三、无源滤波电路和有源滤波电路
无源滤波电路:若滤波电路仅由无源元件(电阻、电容、电感)组成。
有源滤波电路:若滤波电路不仅由无源元件,还由有源元件(双极型管、单极型管、集成运放)组成。
1. 无源低通滤波器
如图所示为RC低通滤波器及其幅频特性,当信号频率趋于零
时,电容的容抗趋于无穷大,故低频信号顺利通过。
带负载后,通带放大倍数的数值减小,通带截止频率升高。可见,无源滤波电路的通带放大倍数及其截止频率都随负载而变化,这一缺点不符合信号处理的要求,因而产生有源滤波器。
2.有源滤波电路
为了使负载不影响
滤波特性,可在无源滤波
电路和负载之间加一个
高输入电阻低输出电阻
的隔离电路,最简单的方
法是加一个电压跟随器,
如右图所示,这样就构成
了有源滤波电路。
在理想运放的条件下,由于电压跟随器的输入电阻为无穷大,输出电阻为零,因而
仅决定于RC的取值。输出电压
=
,负载变化,输出不变。
有源滤波必须在合适的直流电源供电的情况下才能起作用,还可以放大,只适合于信号处理,不适合高电压大电流的负载。
RC低通滤波器的响应特性
曲电阻(R)和电容(C)构成的RC电路是电子电路中使用最多的电路。首先,研究简单的RC电路的特性,针对在CMOS数字电路中的应用进行实验。
图1是各使用一个电阻、一个电容的RC电路。这种电路从频率轴来看,可作为1次低通滤波器处理。所谓低通滤波器是指低频率时通过、高频率时截止,能除去噪声等不需要的高频率的滤波器。
图1 RC电路的频率一增益/相位特性
使用比RC常数所决定的频率f,(称截止频率)低的输人频率时,信号的衰减小;相反地,高频时,因电容C的阻抗(IhoC)与电阻R相比变小,故衰减将变大,并与频率成反比。
一般将低通滤波器上增益为-3dB()处的频率称为截止频率,表示为: 超过截止频率fc的高频域的衰减特性,是以-GdB/oct(频率为2倍时衰减6dB)或-20dB/dec(频率为10倍时衰减20dB,变为1/10)特性的倾率使增益下降。
另外,输入输出间的相位特性也与输人频率f有关。随着频率f的上升,相位延迟角θ变大,在截止频率fc处,变为如下关系:
高频处可接近-90°。
图 1是为研究R=10kΩ、C==15.92kHz)的增益/本目位特性,用增益相位分析器测定出来的结果。照片上夂处放入的标识点(·)与理论值不同,增益为-3.49 dB(正确值—3.0 dB)、相位为-46.8°(正确值-45°),这是因为分析器的输入阻抗及RC的值存在误差的原因。
图1 RC电路实际的频率-增益/相位特性(·表示截止频率)
(F=100Hz~1MHz,GdB/div,20°/div,R=10kΩ,C=1000pF) 从时间轴来看的RC滤波器电路如图2所示,阶跃响应特性的滤波器电路被广泛地使用。因其通过电阻对电容进行充放 电,故也称为RC充放电电路。这种电路对应阶跃输人的响应用下式表示:
输出电压Vo随着时间上升,但并不是直线上升。到达某输出电压Vo时所需要的时间∠可由推导出:
一般地,时间常数T(=RC)是到达输人电压V1,的63.2%时的时间。
图2 RC电路阶跃响应特性(T=RC称为时间常数)
图片2是R=10kΩ、C=l000pF、V1=5V) 时的阶跃响应,在Vo=3V处放入光标。这里的Vo=3V表示后述的HS-CMOS逻辑电路(74HC14AP)的高电平阈值,T=RC=10×10(3)×1000×10(-12)=10μS为最接近的时间点。
范文三:无源带通滤波器电路
无源带通滤波器电路,有源带通滤波器原理图
时间:2010-02-26 23:38:30 来源: 作者:
1. 根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、和带阻滤波器(BEF)四种。图4-1 分别为四种滤波器的实际幅频特性的示意图。
滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通常是某个频率范围)的信号通过,而其它频率的信号幅值均要受到衰减或抑制。这些网络可以由RLC 元件或RC 元件构成的无源滤波器,也可由RC 元件和有源器件构成的有源滤波器。
图4-1 四种滤波器的幅频特性
2.四种滤波器的传递函数和实验模拟电路如图4-2 所示:(a)无源低通滤波器 (b)有源低通滤波器 (c) 无源高通滤波器 (d)有源高通滤波器 (e)无源带通滤波器 (f)有源带通滤波器 (g)无源带阻滤波器 (h)有源带阻滤波器
图4-2 四种滤波器的实验电路
3.滤波器的网络函数H(jω),又称为正弦传递函数,它可用下式表示
式中A(ω)为滤波器的幅频特性,θ(ω)为滤波器的相频特性。它们均可通过实验的方法来测量。
范文四:无源滤波电路之浅谈
无源滤波器缺点:带负载能力差,无放大作用,特性不理想边沿不陡峭,各级互相影响。
RC滤波
1, C值的选取:C不能选的太小,否则负载电容对滤波电路的影响很大,一般IC的输入电容往往有l~lOpF的输入电容。C值选的太大,则会影响滤波电路的高频特性,因为
大电容的高频特性一般都不好。
2, R值的选取:R值过小会加大电源的负载,R值过大则会消耗较多的能量。
1
RC滤波电路的最大缺陷就是他不仅消耗我们希望抑制的信号能量,而目也消耗我们希望保留的信号能量。另外由于受电容高频特性的限制也不能用在太高频的场合,例如数MHz以上需要用LC滤波器。
1. 电容滤波电路
电容滤波电路
分析电容滤波电路工作原理时,主要是用到了电容器的隔直通交特性和储能特性。前面整流电路输出的脉动性直流电压可分解成一个直流电压和一组频率不同的交流电,交流电压部分就会从电容器流过到地,而直流电压部分却因电容器的通交隔直特性而不能接地才流到下一级电路。这样电容器就把原单向脉动性直流电压中的交流部分的滤去掉了。
另外电容滤波电路也可以用电容储能特性来解释,当单向脉动直流电压处于高峰值时电容就充电,而当处于低峰值电压时就放电,这样把高峰值电压存储起来到低峰值电压处再
2
释放。把高低不平的单向脉动性直流电压转换成比较平滑的直流电压。
滤波电容的容量通常比较大,并且往往是整机电路中容量最大的一只电容器。滤波电容的容量大,滤波效果好。电容滤波电路是各种滤波电路中最常用一种。
电源滤波电容如何选取,掌握其精髓与方法,其实也不难。
1)理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的SFR参数,这表示频率大于SFR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地,可以想想为什么?原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容虑低频,小电容虑高频,根本的原因在于SFR(自谐振频率)值不同,当然也可以想想为什么?如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了。
2)那么在实际的设计中,我们常常会有疑问,我怎么知道电
3
容的SFR是多少?就算我知道SFR值,我如何选取不同SFR值的电容值呢?是选取一个电容还是两个电容?电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个,1)器件Data sheet,如22pf0402电容的SFR值在2G左右, 2)通过网络分析仪直接量测其自谐振频率,想想如何量测?知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比。仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB。
电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好。但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时也不可忽略)这就引入了谐振频率的概念:ω=1/(LC)1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性。因而一般大电容滤低频波,小电容滤高频波。
这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高。
4
至于到底用多大的电容,这是一个参考:
电容谐振频率
电容值 DIP (MHz) SMT (MHz)
1.0μF 2.5 5
0.1μF 8 16
0.01μF 25 50
1000pF 80 160
100 pF 250 500
10 pF 800 1.6(GHz)
不过仅仅是参考而已,用老工程师的话说主要靠经验。更可靠的做法是将一大一小两个电容并联,因为大电容高频特性差,小电容高频特性好。一般要求相差两个数量级以上,以获得更大的滤波频段。
5
2. 电感滤波电路
电感滤波电路的原理也和电容器滤波差不多,也是因为电感器的通直阻交特性和储能特性。从储能方面来解释的话和电容器是一样的原理,从通直阻交特性方面来解释电感器的滤波电路时,电感器是把单向脉动性直流电压分解出来的交流电压部分进行阻碍,而电容器却是短路接地。电感量越大滤波效果越好,由电感器单独作滤波电路的情况很少,一般会和电容一起组合使用。
3. L形RC滤波电路
L形RC滤波电路就是在普通电容滤波电路中电容器前面加个电阻器,电阻器是串联在电路中,而电容器是并联在电路中,这时电阻器和电容器形成了的L字形状,所以称它们
6
为L形RC滤波电路。它的滤波原理和滤波效果都和普通电容滤波电路是差不多,这时电容器和电阻器也构成了分压电路,因为电容的容抗很小,所以对交流分量的分压衰减很大,这样交流量通过电容器短路接地,达到滤波的目的。对于直流电压部分,由于电容器对直流电呈隔离状态,这时电容器对电阻器没有分压作用,直流不会流过电容器。在这种滤波电路中,如果电阻器的阻值不变时,加大滤波电容的容量可以提高滤波效果,滤波电容的容量越大越好。如果滤波电容的容量不变,加大电阻器的阻值也可以提高滤波效果,但是滤波电阻的阻值不能太大,因为滤波电阻的阻值太大的话,直流输出电压就会变小。
LC滤波主要是电感的电阻小,直流损耗小。对交流电的感抗大,滤波效果好。缺点是体积大,笨重。成本高。用在要求高的电源电路中。
RC滤波中的电阻要消耗一部分直流电压,R不能取得很大,用在电流小要求不高的电路中。RC体积小,成本低。滤波效果不如LC电路。
LC滤波一般用在高频电路或电源电路上中 而RC用在低频电路中
7
LC滤波器应用的频率范围为1kHz,1.5GHz.由于受限于其中电感的Q值,频率响应的截至区不够陡峭。
1, RC滤波器相对于LC滤波器来说,更容易小型化或者集成,LC相对体积就大多了;
2, RC滤波器有耗损,LC滤波器理论上可以无耗损,所以电源部分电路一般都是LC电路;
3, RC比LC的体积要小,成本要底;
4, RC用在低频电路中,LC滤波一般用在高频电路中;
5, RC滤波中的电阻要消耗一部分直流电压,R不能取得很大,用在电流小要求不高的电路中.RC体积小,成本低.滤波效果不如LC电路; LC滤波主要是电感的电阻小,直流损耗小.对交流电的感抗大,滤波效果好.缺点是体积大,笨重.成本高.用在要求高的电源电路中.
8
6, 滤波级数越多效果也好,但是带来的是损耗和成本越高,所以不建议超过3级;
7, RC滤波器一般常与运算放大器组合使用,构成有源滤波器,多作为低频信号的滤波。例如,在锁相环路中作为环路滤波器使用
4. π形RC滤波电路
首先从结构上来讲,这种滤波电路是由两个电容器和一个电阻器组成,它实际上就是L形滤波电路中电阻器前面再加个电容器接地就成了π形RC滤波电路。两个电容同时进行滤波作用,后面一个滤波电容可以把前面电容未滤完整的直流电压进一步滤波,这样两个电容同时进行滤波,滤波效果当然是更加理想。可以加大第一只滤波电容的容量来提高滤波效果,但第一只滤波电容的容量不能太大,因为刚开机接通电源时,第一只滤波电容容量太大的话充电时间会太长,这一充电电流是流过整流二极管的,当充电电流太大、
9
持续时间太长时,会损坏整流二极管,所以采用这种π形RC滤波电路时,可以使第一只电容容量略有减少,通过调整后面的L形RC滤波电路来提高滤波效果。
π形RC滤波电路
5. 多节π形RC滤波电路
多节π形RC滤波电路就是在普通π形RC滤波电路后面再接一个L形RC滤波电路形成多节π形RC滤波电路。其滤波原理和上面普通π形RC滤波电路一样,只是这种滤波电路会有多个直流电压输出端,越是后面的输出端的直流电压滤波效果越好。第一个滤波输出端电压最高,最后一个滤波输出端电压最低,这主要是因为各节电阻器都有电压降。多节π形RC滤波电路是整机电路中用得最多一种滤波电路。
6. π形LC滤波电路
π形LC滤波电路
这种滤波电路与普通π形RC滤波电路在结构上基本上
10
是一样的,只是将电阻器更换成电感器而已。因为电阻器对
直流电和交流电存在相同的电阻,而电感器对交流电感抗
大,对直流电感抗小,这样既可以提高交流滤波效果,还不
会降低直流输出电压,因为电感器对直流电不存在感抗,不
会像电阻器那样对直流电也存在电压降。电感器的通直阻交
特性是这种滤波电路的最大优点,但是电感器的成本高所以
这种滤波电路没有π形RC滤波电路使用得多。
本文链接:
http://www.daxues.cn/xuexi/dianzi/201710/13122.html
本站内容如无特别说明,均来自网络和网友投稿~如侵犯
了您的权利,请联系我们删除。
window._bd_share_config={“common”:{“bdSnsKey”:{},”bdText”:”“,”bdMini”:”2”,”bdMiniList”:[“mshare”,”tieba”,
”douban”,”tqf”,”kaixin001”,”thx”,”ty”,”isohu”,”people”,”xinhua”,”mail”,”copy”],”bdPic”:”“,”bdStyle”:”0”,”bdSize”:”24”},”share”:{}};with(document)0[(getElementsByTagName(?head?)[0]||body).appendChild(createElement(?script?)).src=
11
?http://bdimg.share.baidu.com/static/api/js/share.js?v=89860
593.js?cdnversion=?+~(-new Date()/36e5)];
12
范文五:无源和有源带通滤波器电路
无源带通滤波器电路,有源带通滤波器原理
2009-04-17 13:30:13| 分类: 电子技术|字号 订阅
滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通 常是某个频率范围)的信号通过,而其它频率的信号幅值均要受到衰减或抑制。这些网
络可以由RLC 元件或RC 元件构成的无源滤波器,也可由RC 元件和有源器件构成的有源
滤波器。
根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器 (LPF )、高通滤波器(HPF )、带通滤波器(BPF )、和带阻滤波器(BEF )四种。图4-1 分 别为四种滤波器的实际幅频特性的示意图。
图4-1 四种滤波器的幅频特性
2.四种滤波器的传递函数和实验模拟电路如图4-2 所示:(a)无源低通滤波器 (b)有源低通滤波器 (c) 无源高通滤波器 (d)有源高通滤波器 (e)无源带通滤波器 (f)有源带通滤波器 (g)无源带阻滤波器 (h)有源带阻滤波器
图4-2 四种滤波器的实验电路
3.滤波器的网络函数H (jω),又称为正弦传递函数,它可用下式表示
式中A(ω)为滤波器的幅频特性,θ(ω)为滤波器的相频特性。它们均可通过实验的方 法来测量。
转载请注明出处范文大全网 » 无源滤波电路与有源滤波电路