不同温度、压力下环己烷2乙酸乙酯体
系
液体密度的测定和预测
王仁远 时 钧
( )南京化工大学化学工程系, 南京 210009 摘要 使用DM A 55 型精密密度计和DM A 512 型高压外测量池, 测定了环己烷2乙酸乙酯体系在温 度 288115—318115K , 压力从常压—1915M P a 下的液体密度。应用三重随机局部组成密度模型, 预
测了该体系在不同温度、压力下的密度, 取得令人满意的结果。
高压 关键词 环己烷 乙酸乙酯 液体密度 混合物
( ) 计测定, 测温误差在?0102?C 内; 3加压和测 引言1 压部分: 加压由日本压力机器株式会社 ( A K I2
密度是流体重要的基础物性数据之一。 在 ) 加工制造的柱塞式高压泵进行。 测压用 CO 文献1 已报道的密度数据中, 高压流体混合物 的压力表经过静重 计 校 核, 测 压 误 差 在 ? 密度数据较少, 而随着现代石油化学工业的发 () 0102内; 4配样部分: 混合物的组成是通 M P a 展, 越来越需要高压下的物性数据。测定高压下
过 天平称重进行配样 的。 称 重 的 误 差 为 ? 的混合物密度数据有重要的意义。 下面介绍用
0102% 。 高压流体密度测定装置对环己烷2乙酸乙酯
液 体混合物在不同温度和不同压力下的密度 212 试验试剂
数据 的测定结果。同时, 还应用三重随机局部试验所用的试剂环己烷为优级纯, 乙酸乙 组成密 度模型, 预测了该体系在不同温度、压酯为分析纯, 色谱分析无杂峰, 折光率和常压密 力下的密 度。 度的测定结果与文献值一致。
213 试验方法
21311 测试方法 密度测试方法是将被测流体 液体密度测定2 充满密度计高 211 试验装置 压振荡器中的样品管, 测定振荡器的振荡周期,
试验所用的密度测定装置可分为 4 个部 然后根据振荡周期与振荡器中被测流体密度的
() 分: 1密度测定部分: 由奥地利公A n to n P aa r 关系, 计算出被测流体密度。振荡器的振荡周期 司制造的 DM A 55 型精密密度计和 DM A 512 与振荡器中被测流体的密度 存在着下列关 T Θ型 高压外测量池组成。型密度计和 55 DM A 系 型高压外测量振荡器测定密度的精 512 DM A 2 - 5 3) ()(= - /1 T B A Θ( ) 度可达?1?10/; 2恒温和测温部分: gcm
恒温控温由丹麦制造的 超级恒温槽进 式中和是密度计的仪器参数H e to , 可通过两种 A B 行, 恒温精度可达?01001?。 恒温槽温度由精 C
本稿于 1995207219 收到。 本课题为中石化总公密水银温度计测量, 振荡管温度由铂电阻温度 司基础研究基金资助项目。
第 6 期 王仁远等: 不同温度、压力下环己烷2乙酸乙酯体系液体密度的测定和预测 ?425?
已知密度的样品进行标定。差所引起的, 因为不同温度和不同压力下的液
体密度的文献数据较少, 精确到小数点后第 521312 试验步骤 高压密度测定的试验步骤如 3 () 下: 1用天平 () 位/的高压液体密度数据更是少见, 本 gcm
( ) 称量试剂, 配制一定组成的混合物样品; 2用 文用于标定仪器参数的苯和正戊烷的密度文献
()被测样品冲洗柱塞泵和振荡器中的样品管; 3 数据, 只到小数点后第 4 位。应用高准确度的密
( ) 将被测样品充满样品管; 4调节温度, 让振荡度数据标定 211 节所述的试验装置, 可提高对
( ) 器维持在试验设定温度; 5调节压力, 让被测 密度测定的准确度。
() 样品维持在试验设定压力; 6观察密度计上显 试验结果和讨论 3示的振荡周期数值, 待其稳定不变或维持在某
一数值左右作周期性变化 5 分钟后, 记录数据; 311 测试数据
用 211 节所述装置测定了环己烷2乙酸乙 () () () 7改变压力, 重复第 6步骤; 8改变温度, 重
酯体系, 在温度分别为 288115、298115、308115 ( ) ( ) ( ) 复第 6和第 7步骤; 9更换样品管中的样
和 318115; 压 力 分 别 为 0110、5100、7180、K () 品, 用同一组成的样品进行重复试验; 10通过
9181、11172、14166、17160 和 19151下的 M P a () 方程 1计算样品密度, 被测样品的密度值为重
密度数据。 试验结果列于表 2 至表 5。 复试验的平均值。
312 混合物密度预测 21313 试验装置考核与讨论
统 计 热 力 学 子 系 统 方 法 的 基 本 原 理 表用 211 节所述的试验装置对同一样品的密
度进行重复测定, 其测定偏差一般不超过平均 4 明, 热力学系统中某一子系统的宏观物理量 3值的?0100004。为了考察试验装置对高 /g cm 等于该子系统处于所有可能的微观状态上相应压液体密度测定的准确度, 我们用苯和正戊烷 微观状态量的概率统计平均。 将此原理应用于
作为参考样品, 标定密度计仪器参数, 测定乙醇系统密度的计算, 则得密度方程 在 298115和不同压力下的密度数据, 并同文 K
= ()Θ?p i Θi2 献2, 3 数据进行比较, 结果见表 1。 表 1 数据 i
表明, 本文测定的密度数据与文献数据一致,式中 Θ为子系统的密度, p i 和 Θi 分别是子 211 节所述的试验装置可以用于高压液体密度 系统处于微观状态 上的概率和密度的微观状 i
的测定。 综合分析温度、压力、组成配制和仪器 态量。对于匀相系统, 系统各处的宏观密度都应 参数标定等各种因素的影响, 可估算得本文对 相等, 系统的宏观密度等于任一子系统的宏观 3 密度测定的准确度在?010002以内。 /g cm () 密度, 故式 2计算的子系统密度也就是系统的
表 1 乙醇在温度 298115和不同压力下 K 密度。密度的试验值和文献值的比较 4 统计热力学的相对性原理表明, 物理学
试验值 文献2 ] 值 文献3 ] 值 压力M P a / 定律在所有微观状态参照系中都是相同的, 都
取相同的数学表达式。应用这个原理, 我们可以 0110 178524 178509 178493 000
( ( ) )9178 0179347 01793580179292 选用最为方便的微观状态参照系来计算系统的
( )( ) 0179369 9190 01793560179302 热力学性质。 ( ( )) 10113 0179374 01793210179389 对于 个组份的流体混合物系统, 考察其 n ( )( ) 0180108 19146 0180096 0180119中一个由 3 分子组成的子系统, 选用组份构型 ( )( ) 0180137 19170 0180128 0180115状态作为微观状态参照系, 假定各组份分子在 ( )( )20127 0180176 0180159 0180182 子系统中出现是随机的, 应用统计热力学的相 注: 括号内数值为内插或外推的数值。 () 对性原理, 由方程 2可得三重随机局部组成混 本试验对高压液体密度测定的准确度不如
重复测定精度。 这主要是由仪器参数标定的误
石 油 化 工 1996 年第 25 卷 ?426?
合物密度模型据拟合求取 k 12 和 k 21 , 并进一步应用它们预测 n n n 其它温度、压力下的该混合物的密度。 = ()Θm ???x ix j x k Θi j k3 i= 1 j = 1 k = 1 本文用 298115、常压下的环己烷2乙酸K
式中 Θm 为混合物的密度; x i、x j 和 x k 分别为混 乙 ( ) 酯体系混合物密度数据拟合求取方程 4
合物中组份 、和 的摩尔分数。 为子系统 ij k Θi j k 的系 198339, 并进一 0, k 12 = 0197429 和 k 21 = 数得到
处于组份构型为 22时的密度。对于双组份混ij k 步应用它们预测不同温度和压力下的该混合物 () , 式3可以简化为 合物的密度。 表 2 至表 5 的下边列出了对不同温度 2 1 1 2 3 2 2 3 3 3 3 3 = + 3+ 3+ 1 1 2 2 Θm x Θ1 k 12 x x 2 Θ1Θ2k 21 x 1 x Θ1Θ2x Θ2 和压力下该混合物密度的预测误差。 对本文所
() 4测定体系的 288 个混合物密度数据, 总平均计 式中 和 分别是纯组份 1 和 2 的密度; Θ1 Θ2 x 1 算误差为 010814? 。 和 分别为混合物中组份 1 和 2 的摩尔分数; x 2 () 根据上述计算结果可知, 密度方程 4能够 方程系数 和 是与组成无关的参数。 若把 k 12 k 21
根据某一温度下的常压液体混合物密度数据, 方程系数 和 看作是与温度和压力无关的 k 12 k 21
参数, 则可由某一温度、常压下的混合物密度数 预测不同温度、不同压力下的液体混合物的密
度。 3( ) ( ) ()表 2 12g 环己烷2乙酸乙酯体系在温度 288115K 下的密度试验数据/cm 压力M P a /0110 5100 7180 9181 11172 14166 17160 19151
组成 x 1
190691 191096 191312 191516 191658 191882 192115 192304 00000000010000
0188651 0189073 0189297 0189487 0189652 0189881 0190120 0190307 011172
0186904 0187333 0187556 0187733 0187903 0188130 0188365 0188546 012265
00000000185486 185915 186145 186306 186485 186712 186949 187126 013262
0184010 0184446 0184673 0184825 0185019 0185250 0185488 0185660 014303
0182663 0183106 0183334 0183481 0183681 0183909 0184148 0184316 015312
0181642 0182085 0182313 0182447 0182650 0182876 0183111 0183274 016185
0180546 0180987 0181212 0181330 0181538 0181760 0181991 0182146 017228
0179590 0180033 0180258 0180366 0180577 0180794 0181022 0181173 018144
0178798 0179239 0179460 0179556 0179771 0179985 0180209 0180352 019092
0178332 0178766 0178982 0179062 0179277 0179485 0179703 0179836 110000
( ) 注: 密度方程4的参数: k 12 = 0197429, k 21 = 0198339, 计算误差: A A D = 010796% 。 n Θ- Θca l, i ex p , i 100 A A D = ?I I , n 为数据个数。n i = 1 Θex p , i
3 ( ) ( ) ()表 3 环己烷12乙酸乙酯2体系在温度 298115K 下的密度试验数据g/cm 压力/M P a 0110 5100 7180 9181 11172 14166 17160 19151
组成 x 1 189442 189948 190155 190281 190396 190575 190846 191074 00000000010000 0187438 0187955 0188173 0188307 0188434 0188622 0188898 0189121 011172 0185723 0186240 0186455 0186585 0186714 0186901 0187173 0187385 012265 0184338 0184853 0185066 0185200 0185338 0185531 0185802 0186013 013262 0182887 0183400 0183616 0183750 0183893 0184086 0184358 0184560 014303 0181573 0182087 0182304 0182440 0182587 0182783 0183054 0183249 015312 0180587 0181100 0181316 0181447 0181597 0181794 0182064 0182253 016185 0179508 0180018 0180236 0180366 0180518 0180715 0180972 0181155 017228 0178579 0179087 0179301 0179430 0179583 0179773 0180035 0180209 018144 00000000177816 178320 178531 178657 178811 179010 179273 179442 019092 0177380 0177875 0178079 0178197 0178345 0178534 0178786 0178943 110000
( ) 注: 密度方程4的参数: k 12 = 0197429, k 21 = 0198339; 计算误差: A A D = 010767% 。
第 6 期 王仁远等: 不同温度、压力下环己烷2乙酸乙酯体系液体密度的测定和预测 ?427?
3( ) ( ) ()表 4 环己烷12乙酸乙酯2体系在温度 308115K 下的密度试验数据g/cm
压力M P a 0110 5100 7180 9181 11172 14166 17160 19151 /
010000 188147 188629 188905 189105 189268 189544 189815 190030 00000000组成 x 1
011172 0186188 0186680 0186961 0187166 0187333 0187611 0187889 0188105
0184506 0184998 0185277 0185472 0185642 0185917 0186185 0186395 012265
0183156 0183644 0183922 0184118 0184286 0184557 0184826 0185032 013262
0181735 0182224 0182501 0182695 0182866 0183139 0183407 0183608 014303
0180457 0180943 0181222 0181417 0181587 0181855 0182118 0182314 015312
016185 0179500 0179984 0180257 0180447 0180617 0180881 0181142 0181335
017228 0178446 0178924 0179198 0179385 0179556 0179820 0180080 0180267
0177545 0178020 0178289 0178470 0178638 0178897 0179135 0179336 018144
0176808 0177276 0177541 0177720 0177882 0178136 0178386 0178565 019092
0176407 0176863 0177121 0177291 0177449 0177694 0177935 0178104 110000
( ) 注: 密度方程4的参数: k 12 = 0197429, k 21 = 0198339; 计算误差: A A D = 010825% 。
3( ) ( ) ()表 5 环己烷12乙酸乙酯2体系在温度 318115K 下的密度试验数据gcm /压力M P a 0110 5100 7180 9181 11172 14166 17160 19151 /
010000 186872 187389 187673 187863 188045 188302 188588 188817 00000000组成 x 1
0184953 0185482 0185763 0185958 0186140 0186404 0186693 0186922 011172
00000000183313 183836 184115 184307 184481 184742 185024 185246 012265
0181994 0182512 0182796 0182990 0183159 0183423 0183706 0183921 013262
014303 0180605 0181116 0181400 0181597 0181767 0182027 0182305 0182517
0179360 0179868 0180151 0180348 0180511 0180771 0181048 0181257 015312
0178426 0178927 0179209 0179405 0179563 0179582 0180095 0180297 016185
0177401 0177892 0178171 0178363 0178513 0178770 0179038 0179234 017228
0176539 0177019 0177294 0177489 0177634 0177881 0178144 0178333 018144
0175828 0176301 0176576 0176763 0176908 0177156 0177414 0177599 019092
0175459 0175916 0176184 0176365 0176494 0176734 0176983 0177157 110000
( ) 注: 密度方程4的参数: k 12 = 0197429, k 21 = 0198339; 计算误差: A A D = 010868% 。
混合物中组份 2 的摩尔分数 x 2 结论4 x i 混合物中组份 的摩尔分数 i
纯组份 1 的密度 Θ1 ( ) 1试验测定了环己烷2乙酸乙酯体系,
纯组份 2 的密度 Θ2 288115—318115, 压 力 从 常 温 度 为 在 K 子系统处于微观状态 上的密度 子系统处于Θi i 压— 组份构型为 22微观状态的密度Θij k ij k 19151下的液体密度, 为化工过程的设计和 M P a 混合物的密度Θm 开发积累了基础物性数据。
参 考 文 献 () 2三重随机局部组成混合物密度方程,
对环己烷2乙酸乙酯体系在不同温度、压力下1,, , F lu ild P h ase E qu il ibr ia T ek ac V C ibu lk a IH o lub R 1
1985; 19: 33 的 密度的预测具有较高精度。 符 号 说 明 , 1, 1977; 9M o r igo sh i T Inubu sh i H J C h em T h erm ody nam ics 2
( ) 6: 587 密度计仪器参数 A , B , , 1O zaw a SO o ya t su N Yam abe M e t a lJ C h em T h erm ody 2 3 子系统处于微观密度方程参数 , k 12 k 21 ( ) , 1980; 12 3: 229nam ics 状态 上的概率 i 密度计振荡器p i 王仁远. 统计热力学的相对性及其应用[ 博士学位论文]。南 4 的振荡周期 混合物中组份 1 的T 京: 南京化工学院化学工程系, 1992 摩尔分数 x 1 ( 下转第 401 页, con tinu ed on p ag e 401)
第 6 期 过中儒等: Z rO 2 负载 R u 2F e 双金属簇及其单金属簇上 CO 加氢反应及 T PD E 研究 ?401?
( te rna t io na l Co ng re ss o n C a ta ly sis E d ito r s. Se iyam a T. 参 考 文 献
) , 1986, , 211e tcT o k yo P a r t A
, , . , 1985;Kam in sk y M Yoo n K J Geo ff ro y G L e t a lJ C a ta l 4 J M ol C a ta l, 1990; 1 Ich ik aw a M , R ao L F , K im u ra T e t a l.
91, 338 ( ) 62 1: 15
() . 5 Yaw ney B W and S to ne F G AJ C h em S oc A I norg 2 肖丰收, 徐如人, 方川胜等 1 中国科学, 1992; 13 ( 6) : 568
( ) , 1969; 3: 502P hy s T h eor 3 , , . 7 Guczi L Sch a ry ZM a tu sch K e t a lP ro ceed ing s o f th In2
- Study of CO Hydrogena t ion Reac t ion on ZrO 2 Suppor ted RuFe B im e ta ll ic an d The ir M on om e ta ll ic Ca ta ly sts an d TPD E of Suppor ted Com p lexe s
G u o Z h on g ru , X u H u iz h en , S h i J ieh u a a n d W a n g Q u n
(), , 310014D ep a r tm en t o f C h em ica l E ng inee r ingZh e jiang U n ive r sity o f T ech no lo gyH angzho u
A bstra c t
2T h e ca ta ly t ic ac t iv ity fo r CO h yd ro gen a t io n reac t io n o f Z rO 2 suppo r ted R u F e b im e ta llic ca ta2
. ly st s an d th e re sp ec t ive m o nom e ta llic ca ta ly st s de r ived f rom va r io u s p recu r so r s w a s de te rm in edIt
( ) 2w a s show n th a t Z rO 2 suppo r ted R u F e b im e ta llic c lu ste r s o b ta in ed f rom R u 2 F e CO 12 o r () R u F e2 CO 12 d isp layed m u ch h igh e r ac t iv ity in th e h yd ro gen a t io n o f CO th an th a t o f suppo r ted
() () , , R u 3 CO 12 F e2 CO 9 an d th e ir m ix ed m e ta l c lu ste r san d th a t o f co n ven t io n a l ca ta ly st s p rep a red
) () () (1, f rom R uC l3 an d F e N O 3 3 T h e deca rbo n y la t io n o f Z rO 2 suppo r ted R u 3 CO 12 F e2 CO 9 an d th e ir
( ) m ix ed c lu ste r ca ta ly st s w a s in ve st iga ted w ith tem p e ra tu re p ro g ramm ed decom po sit io n T PD E . , m e tho dT h e re su lt s in d ica ted th a t b e side s de so rp t io n th e ca rbo n y l o f suppo r ted com p lex e s w a s
, m a in ly d isp ropo t io n a ted to fo rm CO 2 in A rw h e rea s it w a s ch ief ly h yd ro gen a ted to fo rm CH 4 in
.H 2
: , , 2Keyword sh yd ro gen a t io n o f CO tem p e ra tu re p ro g ramm ed decom po sit io n R u F e b im e ta llic ca ta2
() () 2, , , ly st sR u F e m ix ed ca ta ly st sR u 2 F e CO 12 R u F e2 CO 12
)(上接第 427 页, co n t in u ed f rom p age 427
- M ea surem en t an d Pred ic t ion of Cyc lohexan eE thy l A ce ta te L iqu id D en s it ie s
W a n g R eny u a n a n d S h i J u n
(), , 210009D ep a r tm en t o f C h em ica l E ng im ee r ingN an jing U n ive r sity o f C h em ica l T ech no lo gyN an jing
A bstra c t
2T h e liqu id den sit ie s o f th e sy stem o f cyc lo h ex an ee th y l ace ta te h ave b een m ea su red a s a fu n c2
115318115288t io n o f com po sit io n in th e tem p e ra tu re ran ge o f K to K an d p re ssu re s f rom am b ien t
1915155 512 to M P a u sin g an A n to n P aa r DM A den sity m e te r w ith a DM A ex te rn a l m ea su r in g ce ll
1fo r h igh p re ssu re sT h e t r ip le t ran dom lo ca l com po sit io n m o de l o f m ix tu re den sity w a s u sed to
1p red ic t th e den sit ie s a t va r io u s tem p e ra tu re s an d p re ssu re sT h e re su lt s w e re in goo d ag reem en t
1w ith th e exp e r im en ta l da ta
: , , , , Keyword scyc lo h ex an ee th y l ace ta teliqu id den sitym ix tu reh igh p re ssu re
氯乙酸乙酯和苯胺
Spectrochimica Acta Part A 67(2007)
172–177
X-ray crystal structure of phenylglycine hydrazide:Synthesis and
spectroscopic studies of its transition metal complexes
Kalagouda B. Gudasi a , ?, Manjula S. Patil a , Ramesh S. Vadavi a ,
Rashmi V . Shenoy a , Siddappa A. Patil a , M. Nethaji b
b
Department of Chemistry, Karnatak University, Dharwad 580003, India
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
Received 18February 2006; accepted 28June 2006
a
Abstract
Phenylglycine hydrazide was synthesized and investigated by X-ray crystallography. It crystallizes in the monoclinic space group P 121/c with
?b =5.1940(16)A, ?c =26.7793(83)A ?and Z =2. Its conformational changes, on complexation with transition cell parameters a =5.9459(18)A,
metal ions Cu(II),Co(II),Ni(II),Mn(II)and Zn(II)has been studied on the basis of elemental analysis, magnetic moment and spectral (IR,1H NMR, UV–vis)studies. The bidentate nature of the ligand was con?rmedon the basis of a comparative IR and NMR spectral studies. The trigonal bipyramidal geometries were observed for Cu(II),Ni(II)and Co(II)complexes, while it is octahedral for the remaining complexes. The conductivity data suggest them to be non-electrolytes. ?2006Elsevier B.V . All rights reserved.
Keywords:Phenylglycine hydrazide; Amino acid hydrazide; X-ray crystallography; Transition metal complexes
1. Introduction
Amino acids have proven to play a signi?cantrole in the synthesis of novel drug candidates with the use of non-proteinogenic and unnatural amino acids [1–8]. Amino acid side chains of proteins and physiologically active peptides play essential roles in catalysis, molecular recognition, information transfer, and other biological functions. They are involved in binding with target molecules and achieve high ef?ciencyand speci?cityby a combination of interacting groups. The prop-erties of the side groups of aromatic amino acids in metal complexes are particularly interesting, because they can be involved in interactions with the central metal ion as well as other aromatic rings. In addition, these amino acids are important starting materials for the biosynthesis of neurotrans-mitters called catecholamines and serotonine, the initial step for which is the hydroxylation of the aromatic amino acids
Corresponding author. Tel.:+918362460129(Res)/918362215286(Off);fax:+918362771275.
E-mail address:kbgudasi@rediffmail.com(K.B.Gudasi). 1386-1425/$–see front matter ?2006Elsevier B.V . All rights reserved. doi:10.1016/j.saa.2006.06.041
?
by hydroxylases such as phenylalanine hydroxylase (PAH)in the presence of iron or copper and a reduced pterin cofactor 5,6,7,8-tetrahydrobiopterin. This hydroxylation reaction may be regarded as a functionalization of aromatic amino acids [9].
Various important properties of carbonic acid hydrazides and their application in medicine, analytical chemistry have led to an increased interest in their complexation characteristics with transition-metal ions [10]. According to Cabezas and Satterth-wait, relative to simple imines (Schiffbases), hydrazides are expected to have the advantage of greater stability and the poten-tial for peptide-like hydrogen bonding [11]. Hydrazides are reported to exhibit carcinostatic activity against several types of tumors. As a result of their antibacterial and antifungal proper-ties [12]acid hydrazides are of great importance. The formation of metal complexes plays an important role in the enhancement of their biological activity [13].
To gain an insight into the conformational aspects of the title compound and in order to study its coordination behav-ior towards transition metal ions, we have synthesized Cu(II),Co(II),Ni(II),Mn(II)and Zn(II)complexes of phenylglycine hydrazide.
K.B. Gudasi et al. /Spectrochimica Acta Part A 67(2007)172–177
173
Scheme 1.
2. Experimental section 2.1. Measurements
The metal content of the complexes was determined by EDTA titration after decomposition with a mixture of HCl and HClO 4. The chloride content of the complexes was determined as AgCl gravimetrically [14]. The carbon, hydrogen and nitrogen con-tents in each sample were determined using a Heraus ?1C H N rapid analyzer. IR spectra in the 4000–400cm range were measured with a Thermo Nicolet 320FT-IR spectrometer using KBr discs. 1H NMR spectra were recorded in DMSO-d 6as the solvent at 400MHz with a BRUKER AMX 400spectrometer using tetramethylsilane (TMS)as an internal reference. UV–visspectra of the complexes were recorded on a Varian CARY 50Bio UV–visspectrophotometer. The magnetic susceptibil-ity measurements were carried out on a Faraday balance using Hg[Co(NCS)4]as the calibrant and diamagnetic corrections were made by direct weighing of the ligand for diamagnetic ?pull. Conductance measurements were recorded in DMSO (103M) using Elico conductivity bridge type CM-82, provided with a dip type conductivity cell ?ttedwith platinum electrodes. EPR spec-tra were recorded on a Varian E-4X-band spectrometer using tetracyanoethylene (TCNE)as ‘g ’(g =2.0027) marker at room temperature and also at liquid nitrogen temperature. The ther-mal studies of the complexes were carried with Mettler Toledo TGA/SDTA851e with star e software, under nitrogen atmosphere with a heating rate of 10?C/minin the temperature range of 50–1000?C.
The crystal data were collected on a BRUKER SMART APEX CCD DIFFRACTOMETER equipped with a ?ne-focussealed tube employing graphite monochromatised radiation (λ=0.71073A).
?Mo K ?
The structures were solved using SHELXS-97and the model was re?nedusing SHELXL-97. The hydrogen atoms were re?nedfrom the ρmap and included in the re?nement.The non-hydrogen atoms were re?nedanisotropically while hydrogens were re?nedisotropically [15]. 2.2. Materials
All the solvents used were of analytical grade and used without further puri?cation.Starting materials, aniline and chloroethylacetate were obtained from s.d. Fine-chem Ltd., India.
2.3. Synthesis of ligand and complexes
The preparation of phenylglycine ester (pge)and phenyl-glycine hydrazide (pgh)[16]involves the following steps (Scheme 1).
2.3.1. Preparation of phenylglycine ester
Equimolar quantities of aniline (0.01mol), chloroethylac-etate (0.01mol) and sodium acetate were mixed with abso-lute alcohol. The mixture was re?uxedon an oil bath for 6h at 225–230?C. The product was cooled to room temper-ature and mixed with 100ml of water. The solid ester was extracted with ether and dried in vacuo over anhydrous CaCl 2. Excess chloroethylacetate was removed by vacuum distilla-tion. The product was recrystallised from aqueous alcohol. The purity of the compound was tested by TLC. Yield:85%,mp:85?C.
2.3.2. Preparation of phenylglycine hydrazide
A 0.01mol of pge and 90%hydrazine hydrate (0.01mol) were mixed with 50ml of absolute alcohol. The mixture was re?uxedon a water bath for 8h. Alcohol and excess hydrazine hydrate were removed by rotary evaporation. The remaining por-tion was cooled to get the pgh, which was recrystallised from methanol. The colourless crystals were obtained which were suitable for X-ray diffraction. Yield:90%.
2.3.3. Cu(II),Co(II),Ni(II),Mn(II)and Zn(II)complexes
An ethanolic solution (10ml) of 0.001mol of metal (II)chlo-ride was added to 10ml of a clear solution of pgh (0.165g, 0.001mol) in 10ml of ethanol. The resulting mixture was re?uxedfor 4h on a water bath. The volume was reduced to half by slow evaporation. After cooling, the complex precipi-tates out, which was ?ltered,washed with ethanol and dried in vacuo. Attempts to grow single crystals of the complexes were unsuccessful.
3. Results and discussion
All the complexes were stable in air and insoluble in chloroform, dichloromethane and benzene but soluble in DMF and DMSO. The elemental analyses indicate the mononuclear complexes (Fig. 1) with the empirical formula [M(pgh)Cl2(n H 2O)]·x H 2O [M=Cu(II),Ni(II),Co(II),Mn(II),Zn(II)and Cd(II),n =1, 2and x =0, 1, 2].The molar conduc-
174K.B. Gudasi et al. /Spectrochimica Acta Part A 67(2007)
172–177
Fig. 1. Proposed structure for the complexes of pgh.
Table 1
Analytical, conductance and magnetic moment data of pgh and its complexes Compound
MF
FW
Found (Calcd.)%C
pgh
[Cu(pgh)Cl2(H2O)]·H 2O [Co(pgh)Cl2(H2O)]·2H 2O [Ni(pgh)Cl2(H2O)]·2H 2O [Mn(pgh)Cl2(H2O) 2]
C 8H 11N 3O
CuC 8H 15N 3O 3Cl 2CoC 8H 17N 3O 4Cl 2NiC 8H 17N 3O 4Cl 2MnC 8H 15N 3O 3Cl 2
165.0335.5348.9348.6326.9
58.00(58.18)28.15(28.61)27.14(27.51)27.00(27.53)29.26(29.36)
H 6.30(6.66)4.18(4.47)4.50(4.87)4.65(4.87)4.39(4.58)
N
25.25(25.45)12.00(12.51)12.01(12.03)12.00(12.04)12.35(12.84)
M
–
18.50(18.92)16.50(16.88)16.25(16.81)16.18(16.79)
Cl
–
21.00(21.16)20.15(20.34)20.15(20.36)21.50(21.72)
–11.2512.508.6Z815.60
–1.704.502.325.70
ΛM a
μeff (B.M.)
The values in the parentheses are calculated; Diamag., diamagnetic; MF, molecular formula; FW, formula weight. a ?1cm 2mol ?1.
tivity, magnetic moment and analytical data are presented in Table 1. 3.1. IR spectra
Conclusions on coordinating sites are drawn by comparing the infrared spectra of the ligand and the respective complexes. Important IR spectral bands of pgh and its complexes along with their tentative assignments are presented in Table 2.
The spectrum of pgh exhibits asymmetric –NH2stretch-ing frequency at 3339cm ?1and symmetric –NH2stretching frequency at 3302cm ?1. On complexation it is observed that asymmetric stretching band has been considerably lowered in frequency compared with that of the uncoordinated ligand while the symmetric stretching band has disappeared. These changes indicate the coordination of hydrazinic-nitrogen to the metal ion. The changes in –NHfrequency are a consequence of drainage of electrons from nitrogen atom resulting in the weakening in the N–Hbond [17]. This indicates that the nitrogen atom of the amino group serves as a coordinating center in the ligand. The appearance of a new broad band in the region 3359–3497cm ?1followed by another band at ~826–839cm ?1indicates the pres-ence of coordinated water molecule [18].
Table 2
IR spectral data (cm?1) of pgh and its complexes Compound
pgh
[Cu(pgh)Cl2(H2O)]·H 2O [Co(pgh)Cl2(H2O)]·2H 2O [Ni(pgh)Cl2(H2O)]·2H 2O [Mn(pgh)Cl2(H2O) 2][Zn(pgh)Cl2(H2O) 2]
ν(OH)(H2O) –34343497335934283374
ν(NH)(asymm.)333931953207319032053264
The carbonyl stretching vibration observed at 1650cm ?1has shifted to lower frequencies in the spectra of all the com-plexes suggesting its involvement in coordination. The non-ligand bands of weak to medium intensity were observed in the region 503–581cm ?1and 410–478cm ?1and ascribed to M–Nand M–Ovibrations, respectively. 3.2. 1H NMR spectra
The ligand spectrum shows a sharp singlet for methylene protons at 3.61ppm. The peak corresponding to –NH2was observed at 4.22ppm which is D 2O exchangeable. Signal for –NHattached to phenyl ring was observed at 5.81ppm and for amide –NHat 9.04ppm (D2O exchangeable). The aromatic pro-tons were observed in the region 6.54–7.10ppm.
In the NMR spectrum of Zn(II)complex of pgh, the methy-lene group has shifted from 3.61to 3.82ppm due to the involve-ment of adjacent >CO group in coordination. The –NH2group has shifted to down?eldregion to 4.50ppm indicating its involvement in coordination. The signal due to amide –NHhas shifted from 9.04to 9.20ppm, indicating the coordination of the ligand through >Cν(NH)(sym.)3302
–––––
ν165016101616164416211644
ν(M–O)–507509513524503
ν(M–N)–417410423421478
δ(OH)(H2O) –839837830826830
K.B. Gudasi et al. /Spectrochimica Acta Part A 67(2007)172–177
175
Fig. 2. Electronic spectrum of [Co(pgh)Cl2(H2O)]·2H 2O.
3.3. Electronic spectra
The electronic spectrum of Cu(II)?1complex shows d–dtran-sition bands to 2A 1→2at E 10917and 2and A 142851→2cm and have been attributed
E transitions, respectively. The
position and energy of transitions indicates a trigonal bipyra-midal geometry for Cu(II)complex [19]. The 1Ni(II)complex exhibits two bands at 12562and 24630cm ?to the transitions 3E (F)→3A a 1+3A corresponding
3 3 trigonal 2(F)and E (F)→E
(P),respectively. This suggests bipyramidal geometry for Ni(II)complex. The electronic spectrum of ?Co(II)1com-plex exhibit the bands around 11682and 15847cm to 4A 2→4E (F)and 4A 4 assignable
the trigonal bipyramidal 2→A geometry 2(P)transitions, respectively
favoring for Co(II)complex. The Mn(II)and Zn(II)complexes did not show any d–dtransi-tions. The electronic spectrum of Co(II)complex is displayed in Fig. 2.
3.4. Magnetic moments
The magnetic moment values of all the complexes of pgh are recorded at room temperature. The Cu(II)complex exhibits a μeff value of 1.70B.M. The proximity of the observed μeff value with the spin only value rules out the possibility of metal–metalinteraction. The magnetic moment value of Co(II)complex is found to be 4.50B.M., which is well within the reported range for trigonal bipyramidal geometry [20,21]. Ni(II)complex shows a μeff value of 2.32B.M. for trigonal bipyramidal com-plex [20,21]. The effective magnetic moment of Mn(II)complex observed is 5.70B.M., which is indicative of high-spin type com-plex and also the non-involvement of orbital contribution. Zn(II)complex is diamagnetic with d 10con?guration.3.5. EPR spectra
The EPR spectra of the Cu(II)complex at both 300and 77K show intense absorption band at high ?eld,which is isotropic
due to the tumbling motion of the molecules. The g iso values at 300and 77K are 2.07and 2.08, respectively. Mononuclear nature of the complex was also evident from the absence of a half ?eldsignal due to the m s =±2transitions, ruling out any Cu–Cuinteraction [22]. 4. Crystallographic studies
The X-ray quality crystals of pgh were obtained by the slow evaporation of the methanolic solution. The molecule crystal-lizes in monoclinic system with the space group P 121/c 1, with
β=94.00. (16)A
?The cell dimensions are a =5.9459(18)A,
?b =5.1940and c =26.7793(83)A, ?Z =2and volume =825.01(44)A
?3(CCDCNo. 292960). Crystallographic parameters, selected bond lengths, bond angles, torsion angles, equations for the mean least square planes in the structure and hydrogen bonds are compiled in Tables 3–6, respectively. The ORTEP and molecular packing diagrams of the title compound are shown in Figs. 3and 4, respectively. The molecular packing diagram shows the presence of three
intermolecular hydrogen bonds viz. N1–H5···O1=3.011(2)A,
?Table 3
Crystallographic parameters of pgh Empirical formula C 8H 11N 3O FW
165.19Crystal system Monoclinic Space group P 121/c a (A) ?5.9459(18)b (A) ?5.1940(16)c (A) ?26.7793(83)α(?) 90.00(0.00)β(?) 94.00(0.00)γ(?) 90.00(0.00)V (A ?3) 825.01(0.44)Z 2
T (K)
293(2)Absorption coef?cient(mm?1)
0.074λ(MoK ?) (A)
?0.71073F (000) 278
θrange
3.05–28.00
Limiting indices ?7≤h <7, ?5≤k="">7,><6, ?34≤l="">6,><35re?ectionscollected 5378independent="">35re?ectionscollected>
Data/restraints/parameters1941/0/153Goodness-of-?ton F 20.785
Final R indices [I >2σ(I )]
R 1=0.0523, w R 2=
0.1499
Fig. 3. ORTEP diagram of pgh.
176
K.B. Gudasi et al. /Spectrochimica Acta Part A 67(2007)172–177
Table 4
Bond distances (A) ?in pgh Bonds Bond lengths O1–C8
1.2356(2)C1–C61.3807(4)C1–C21.3796(4)N1–C71.4444(3)N1–C41.3945(2)N2–N31.4143(2)N2–C81.3247(2)C7–C81.5171(3)C6–C51.3805(3)C4–C51.3924(3)C4–C31.3945(3)C2–C3
1.3741(3)Bond angle (?) C6–C1–C2118.91C7–N1–C4121.41N3–N2–C8122.40N1–C7–C8113.60C1–C6–C5121.24N1–C4–C5122.90N1–C4–C3118.91C5–C4–C3118.12O1–C8–N2122.98O1–C8–C7121.73N2–C8–C7115.29C6–C5–C4120.11C1–C2–C3120.90C4–C3–C2
121.23
Table 5
Torsion angles (?) in pgh C4–N1–C7–C886.73C7–N1–C4–C5?8.19C7–N1–C4–C3174.93N3–N2–C8–O1?3.01N3–N2–C8–C7176.40N1–C7–C8–O1?171.61
N1–C7–C8–N28.98N1–C4–C5–C6?177.68N1–C4–C3–C2
177.31
N3–H3A ···O1=3.084(3)A
?and N2–H2A···N3=3.190(3)A. ?The average is 1.38A,
?C–Cbond distance among the phenyl ring carbons
comparable with the reported value [23]. The Csp 2–N[C4–N1=1.3945(25)A]
?and Csp 3–N1[C7–N1=1.444(28)A]?shows (24)A]
?the single bond character. The C O [C8–O1=1.2356
distance shows the double bond character [23]. Table 6
Least square planes through the phenyl ring and N1, C7, C8, N2, N3atoms Planes
m 1m 2m 3D (1)Phenyl ring C1C2
?0.397350.67173?0.62522?3.62564C3C4C5C6(2)Atoms N1, C7,
0.42387
?0.41869
?0.80314
?0.64818
C8, N2, N3
Equation of the plane:m 1x +m 2y +m 3z =D
.
Fig. 4. Molecular packing diagram of pgh.
In the structure of pgh, plane I ?[C1,C2, C3, C4, C5, C6]makes a dihedral angle of 86.99with plane II [N1,C7, C8, N2, N3].The torsion angles N3–N2–C8–O1=?3.01?and N1–C7–C8–O1=?171.61?reveal that O1and N3are cis to each other and O1and N1are trans to each other. The angles around C7[N1–C7–H7=112.43?, N1–C7–H7=107.64?, H7–C7–C8=107.20?and H7 –C7–C8=108.67?]indicate that the C7is in tetrahedral environment. Acknowledgements
The authors are thankful to Dr. M. Nethaji, Indian Institute of Science, Bangalore for the X-ray crystallographic studies. The authors thank to Sophisticated Instrumentation Facility, Indian Institute of Science, Bangalore 1and Indian Institute of Tech-nology, Bombay for recording H NMR and EPR spectra. The authors also thank Professor S.B. Padhye, University of Pune, India for magnetic measurement facilities. Thanks are also due to the University Sophisticated Instrumentation Center, Karnatak University, Dharwad for carrying out elemental and electronic spectral analyses. References
[1]D. Barrett, A. Tanaka, K. Harada, H. Ohki, E. Watabe, K. Maki, F. Ikeda,
Bioorg. Med. Chem. Lett. 11(2001)479.
K.B. Gudasi et al. /Spectrochimica Acta Part A 67(2007)172–177
177
[2]J.T. Kovalainen, J.A.M. Christians, S. Kotisaari, J.T. Laitinen, P.T. Man-nisto, J. Med. Chem. 42(1999)1193.
[3]A. El-Faham, A.M. El Massry, A. Amer, Y .M. Gohar, Lett. Pept. Sci. 9
(2002)49.
[4]F. Polyak, W.D. Lubell, J. Org. Chem. 63(1998)5937.
[5]Y . Okada, M. Tsukatani, H. Taguchi, T. Yokoi, S.D. Bryant, L.H. Lazarus,
Chem. Pharm. Bull. 46(1998)1374.
[6]G. Sun, N.J. Uretsky, L.J. Wallace, G. Shams, D.M. Weinstein, D.D. Miller,
J. Med. Chem. 39(1996)4430.
[7]P.R. Marsham, J.M. Wardleworth, F.T. Boyle, L.F. Hennequin, R. Kimbell,
M. Brown, A.L. Jackman, Med. Chem. 42(1999)3809.
[8]Y . Xia, Z.-Y . Yang, P. Xia, K.F. Bastow, Y . Nakanishi, K.-H. Lee, Bioorg.
Med. Chem. Lett. 10(2000)699.
[9]O. Yamauchi, Pure Appl. Chem. 67(2)(1995)267. [10]M. Katual, G. Dutt, Talanta 22(1972)151.
[11]E. Cabezas, A.C. Satterthwait, J. Am. Chem. Soc. 121(1999)3862.
[12]J. Miazawa, T. Kawabata, N. Ogasawara, Physiol. Mol. Plant Pathol. 52
(1998)115.
[13]B. Singh, R. Shrivastava, K.K. Narang, Synth. React. Inorg. Met. Org.
Chem. 30(2000)1175.
[14]A.I. V ogel, A Text Book of Quantitative Inorganic Analysis, 3rd ed., ELBS,
Longman, London, 1969.
[15]G.M. Sheldrick, SHELXL 97Programme for the Solution of Crystal Struc-tures, University of Gottingen, Germany, 1997.
[16]T.M. Amminabhavi, N.S. Biradar, S.B. Patil, D.E. Hoffman, N.N. Biradar,
Inorg. Chim. Acta 135(1987)139.
[17]W.V . Malik, D.K. Rastogi, M.P. Teotia, Ind. J. Chem. 11(1973)1303. [18]K.B. Gudasi, T.R. Goudar, Synth. React. Inorg. Met. Org. Chem. 30(10)
(2000)1859.
[19]D.N. Sathyanarayana, Electronic Absorption Spectroscopy and Related
Techniques, Orient Longman Limited, ?UniversitiesPress (India)Lim-ited, 2001.
[20]F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 3rd ed.,
Wiley–EasternIndia Ltd., New Delhi, 1980.
[21]L. Dutta, A. Shyamal, Elements of Magnetochemistry, S. Chand and Co.,
New Delhi, 1982.
[22]R.L. Farmer, F.L. Urbach, Inorg. Chem. 13(1974)587.
[23]B. Iwasaki, I. Tanaka, A. Aihara, Acta Crystallogr. B 32(1976)
1264.
第九讲乙酸和乙酸乙酯
第九讲 乙醇、乙酸、乙酸乙酯
1. 下列有机物哪些是烃的衍生物?并在横线上写出其中的官能团的名称和结构简式。
A. CH3CI __________________ B. CH2==CHCI________________________
C.CH3CH3 __________ D. CH3CH2OH ________________ E
_______
F NO2__________________G. CH3COOH_____________ H CH2=CH2_________________
I CH3COOCH2CH
2.1-丁醇和乙酸在浓硫酸作用下,通过酯化反应制得乙酸丁酯,
反应温度为115~125 ℃,反应装置如右图,下列对该实验
的描述错误的是( )
A.不能用水浴加热 B.长玻璃管起冷凝回流作用
C.提纯乙酸丁酯需要经过水、氢氧化钠溶液洗涤
3.下列说法错误的是( )
A.乙醇和乙酸都是常用调味品的主要成分
B.乙醇和乙酸的沸点和熔点都比C2H6、C2H4的沸点和熔点高
C.乙醇和乙酸都能发生氧化反应
D.乙醇和乙酸之间能发生酯化反应,在浓硫酸的作用下乙酸和乙醇有一种能消耗完
4.乙醇分子中的化学键如图所示:
与金属钠反应, 断裂;
在Ag或Cu催化作用下和O2反应, 断裂;
乙醇完全燃烧时 断裂,
5.在实验室制得1 mL乙酸乙酯后,沿器壁加入0.5 mL紫色石蕊试液,这时紫色石蕊 溶液将存在于饱和Na2CO3溶液层与乙酸乙酯层之间(整个过程不振荡试管)。对于可能出现的现象,下列叙述正确的是( )
A.液体分为两层,石蕊溶液仍呈紫色,有机层呈无色
B.石蕊溶液分为三层,由上而下呈蓝、紫、红色
C.石蕊溶液分为两层,上层呈紫色,下层呈蓝色
D.石蕊溶液分为三层,由上而下呈红、紫、蓝色
6. 难溶于水而且比水轻的含氧有机物是 ( )
①硝基苯②苯③ 溴苯 ④ 植物油 ⑤ 乙醇⑥乙酸乙酯 ⑦乙酸
A.②④⑥ B.①②③④⑤ C.④⑥ D.①②③
7、下列物质中,能与醋酸发生反应的是
①石蕊 ②乙醇 ③小苏打 ④金属铝 ⑤氧化镁 ⑥碳酸钙 ⑦氢氧化铜
A.①③④⑤⑥⑦ B.②③④⑤ C. ①②④⑤⑥⑦ D.全部
8.下列除去杂质的方法正确的是 ( )
①除去乙烷中少量的乙烯:光照条件下通入Cl2,气液分离
②除去乙酸乙酯中少量的乙酸:用饱和碳酸钠溶液洗涤、分液、干燥、蒸馏
③除去CO2中少量的SO2:气体通过盛饱和碳酸钠溶液的洗气瓶
④除去乙醇中少量的乙酸:加足量生石灰、蒸馏
A.①② B.②④ C.③④ D.②③
9.(8分)已知乳酸的结构简式为CH3-CH-COOH 。试回答: |OH
(1)乳酸分子中含有________和_________两种官能团(写名称); ...
(2)乳酸与金属钠溶液反应的化学方程式为_____________________________________;
(3)乳酸与Na2CO3溶液反应的化学方程式为_______________________________;
(4)当乳酸和浓硫酸共热时,能产生多种酯类化合物,任意写出两种该类产物的结构简式
。
10.丙烯酸的结构简式为CH2=CH—COOH,其对应的性质中不正确的是 ( )
A.与钠反应放出氢气 B.与新制的Cu(OH)2悬浊液反应
C.能与溴水发生取代反应 D.发生相互加成反应生成高分子化合物
11、用括号内的试剂和分离方法,除去下列物质中的少量杂质,正确的是
A.乙酸乙酯中的乙酸(饱和Na2CO3溶液,蒸馏)
B.乙烷中的乙烯(NaOH溶液,洗气)
C.溴苯中的溴(KI溶液,分液)
D.乙醇中的乙酸(NaOH,蒸馏)
12、乙醇和乙酸对比:(判断能否反应,若能,请打”∨”,若不能请打”х”)
13、实验室制取乙酸乙酯的主要步骤如下:
①在甲试管(如图)中加入2mL浓硫酸、3mL乙醇和2mL乙
酸的混合溶液.②按右图连接好装置(装置气密性良好)并
加入混合液,用小火均匀地加热3~5min。③待试管乙收集
到一定量产物后停止加热,撤出试管乙并用力振荡,然后静
置待分层。④分离出乙酸乙酯层、洗涤、干燥。
(1)配制该混合溶液的主要操作步骤_______________________________________ ;反应中浓硫酸的作用是___________________写出制取乙酸乙酯的化学方程式:
___________________________________;(2)上述实验中饱和碳酸钠溶液的作用是(填字母):_______________
A.中和乙酸和乙醇。 B.中和乙酸并吸收部分乙醇。 C.加速酯的生成,提高其产率。
D.乙酸乙酯在饱和碳酸钠溶液中的溶解度比在水中更小,有利于分层析出。
(3)欲将乙试管中的物质分离开以得到乙酸乙酯,必须使用的仪器有 __________;分离时,乙酸乙酯应该从仪器 ________ (填:“下口放” 或“上口倒”)出。
ZHFY-Ⅰ乙酸乙酯皂化反应测定装置和乙酸乙酯皂化反应测定装置价格
联系我们请登录:www.nanbeijt.com 查询优惠价格及更多产品请百度查询 南北仪器 ZHFY-?乙酸乙酯皂化反应测定装置和乙酸乙酯皂化反应测定装置价格 标题:ZHFY-?乙酸乙酯皂化反应测定装置 ZHFY-?乙酸乙酯皂化反应测定装置 本测定…
实验名称: 凝固点降低法测定摩尔质量 院(系、中心):(盖章) 实验序号: 1 每组人数: 2 计划学时数: 6 实验要求: 必做 实验类型: 验证 实验类别: 专业基础 实验班级: 06材料 实验者人数: 47 实验者类别: 学生 三、环境及其他…
文献检索与科技论文写作 课程论文 研究主题:乙酸乙酯生产应用及相关特性的研究 学生姓名:谭小玲 学 号:040940340 指导教师:谭志伟 评 分: 日 期:2012.06.20 研究主题 乙酸乙酯在生产上的应用及相关特性的研究 检索
1
背景 乙酸乙…
联系我们请登录:www.nanbeijt.com 查询优惠价格及更多产品请百度查询
南北仪器
ZHFY-?乙酸乙酯皂化反应测定装置和乙酸乙酯皂化反应测定装置价格 标题:ZHFY-?乙酸乙酯皂化反应测定装置 ZHFY-?乙酸乙酯皂化反应测定装置 本测定 装置采用电导法测定化学反应速率常数,并通 过图解法求二级反应的速率常数。 一体化设 计, 同时具有电导功能及计数功能。 外形美观, 操作简便。 该实验装置不仅能进行乙酸乙酯皂 化反应速率常数的测定,还可进行电导率的测 ZHFY-?乙酸乙酯皂 化反应测定装置 定实验。 可选配和计算机连接的 RS232C 串行 口。 技术指标: * 测量范围:0, 2×105us/cm * 基本误差:≤1.2% * 温 度补偿范围:(10,40)? * 计时范围:0, 99.9 分钟 * 模拟信号输出: 0,10mV (DC) * 消耗功率: 20W * 可选配 SYP 系列玻璃恒温水 浴 ... 标题:ZD-BZ 振荡实验装置 ZD-BZ 振荡实验装置 本装置应用于 “BZ 振荡实验”。电压测量仪可配 备计算机接口,和计算机连接,完成实验自动 化。 装置组成及特点: 分体式: * SYC-15
2
超级恒温水浴 温度波动:±0.1?或 ±0.02?;分辨率:0.1?或 0.01? * NDM-?精密数字电压测量仪 测量范围:0, ±1000V, 分辨率: ,uV * BZ 反应器 (含 ZD-BZ 振荡实验装置 电极) 一体化: * 将数字直流电压测量仪、 BZ 反应器一体化设计,配套 SYC 超级恒温水 浴, 有数字接口,便于和计算机连接,实现电 脑自动绘图。 * 电势测量范围: 0,2V (0.1mV 分辨率) 0,20V (1mV 分辨率) 两档, 根据 实 验要求自行确定。 * 输入阻抗:, 1012Ω,避免仪表电路对振荡体系的影 响。 * 仪器采用箱式设计,易于使用和存放, 厂家:南北仪器 市场价格: 优惠价格:百度 搜索联系 厂家:南北仪器 市场价格: 优惠价格:百度 搜索联系
3
联系我们请登录:www.nanbeijt.com 查询优惠价格及更多
产品请百度查询
南北仪器
反应...
4
联系我们请登录:www.nanbeijt.com 查询优惠价格及更多产品请百度查询 南北仪器 ZHFY-?乙酸乙酯皂化反应测定装置和乙酸乙酯皂化反应测定装置价格 标题:ZHFY-?乙酸乙酯皂化反应测定装置 ZHFY-?乙酸乙酯皂化反应测定装置 本测定…
联系我们请登录:www.nanbeijt.com 查询优惠价格及更多产品请百度查询 南北仪器 ZHFY-?乙酸乙酯皂化反应测定装置和乙酸乙酯皂化反应测定装置价格 标题:ZHFY-?乙酸乙酯皂化反应测定装置 ZHFY-?乙酸乙酯皂化反应测定装置 本测定…
联系我们请登录:www.nanbeijt.com 查询优惠价格及更多产品请百度查询 南北仪器 ZHFY-?乙酸乙酯皂化反应测定装置和乙酸乙酯皂化反应测定装置价格 标题:ZHFY-?乙酸乙酯皂化反应测定装置 ZHFY-?乙酸乙酯皂化反应测定装置 本测定…
百度搜索“就爱阅读”,专业资料,生活学习,尽在就爱阅读网92to.com,您的在线图书馆
5
一组 乙酸乙酯和乙酸丁酯精馏设计
7200吨/年乙酸乙酯-乙酸丁酯
精馏塔装置设计
设计人:一组(组长:李成敏(李斌)
系 别:化学工程与材料科学学院
专 业:化学工程与工艺
班 级:2008级本科二班
指导教师: 鞠彩霞
完成时间: 2011-06-09
1
目 录
1 工艺设计背景............................................................... 3
2 工艺设计方案............................................................... 4
2.1 工艺说明............................................................................................................................ 4
2.2 工艺流程图 ........................................................................................................................ 4 3 工艺计算 .................................................................. 5
3.1物料衡算............................................................................................................................. 5
3.2 热量衡算............................................................................................................................ 6 4 工艺设备设计............................................................... 7
4.1 筛板精馏塔设计 ................................................................................................................ 7
4.1.1馏出液和釜残液的流量和组成 .............................................................................. 7
4.1.2理论塔板数及理论最佳进料位置 .......................................................................... 8
4.1.3实际塔板数的计算 ................................................................................................ 10
4.1.4塔径的确定 ............................................................................................................ 10
4.1.5塔盘的设计 ............................................................................................................ 13
4.1.6塔板流动性校核及负荷性能图 ............................................................................ 13
4.1.6 塔高的设计计算 ................................................................................................... 18
4.2 列管式换热器设计 .......................................................................................................... 18
4.2.1 换热器热量的衡算 ............................................................................................... 18
4.2.2壳程内径设计 ........................................................................................................ 19
4.2.3 换热器总传热系数的校核 ................................................................................... 20
4.2.4 实际传热面积 ....................................................................................................... 21
4.2.5 换热器简图 ......................................................................................................... 21
4.3 离心泵选型 .................................................................................................................... 21
4.3.1 计算平均粘度 ....................................................................................................... 21
4.3.2 计算管径 ............................................................................................................... 22
4.3.3 计算管路压头损失 ............................................................................................... 22
4.3.4扬程的计算 ............................................................................................................ 22
4.3.5最大允许安装高度 ................................................................................................ 23 5设计总结 .................................................................. 23
6参考文献 .................................................................. 24
致谢......................................................................................................................................... 25
附录:物性图表.............................................................. 26
2
1 工艺设计背景
乙酸乙酯和乙酸丁酯是工业上重要的溶剂。乙酸丁酯是优良的有机溶剂,广泛用于硝化纤维清漆中,在人造革、织物及塑料加工过程中用作溶剂,也用于香料工业。工业中的乙酸丁酯是由醋酸和正丁醇在催化剂存在下酯化而得,根据催化剂不同,可分为硫酸催化法、HZSM-5催化剂催化法、杂多酸催化法、固体氯化物催化法等。其中硫酸催化法工艺比较成熟,但副反应较多。
本设计针对硫酸催化法生产乙酸丁酯时产生的一股物流(含乙酸乙酯30%、乙酸丁酯70%),设计常压精馏塔对此二元物系进行分离。要求塔顶馏出液中乙酸乙酯的回收率为95%,釜残液中乙酸丁酯的回收率为97%。该工艺物流的处理量为7200吨/年。产品均需要冷却到40?。塔釜采用外置再沸器,冷公用工程为循环水(20??30?),热公用工程为饱和水蒸汽,环境温度为20?。已知物性图表见附录。
操作条件见下表:
表1 设计操作条件
操作压力 常压
进料热状况 冷液进料,进料温度为60?
6.8 回流比
塔釜加热蒸汽压力 0.4MPa(表压)
塔板类型 筛板
工作日 每年300天,每天24小时连续运行
本设计主要包括:筛板精馏塔工艺设计、精馏塔辅助设备设计(含列管式换热器、离心泵)。
3
2 工艺设计方案
2.1 工艺说明
从乙酸乙酯—乙酸丁酯的核心生产装置——精馏装置着手,进行分析。工艺如图所示。原料经离心泵送入换热器,经釜液余热预热后进入精馏塔,精馏塔釜设置再沸器,最后乙酸乙酯从塔顶蒸出,经塔顶换热器冷凝后,冷凝液部分泡点回流,另一部分进入换热器,进一步冷却为乙酸乙酯产品采出。塔釜得到的釜液,首先进入预热换热器,将原料液预热到指定温度(60?),然后进入二级换热器冷却为乙酸丁酯产品。
2.2 工艺流程图
蒸汽
离心泵
进
料 冷却水 板
塔顶产品 蒸汽
水蒸气 再沸器
冷凝水 液体
进料 塔底产品
4
3 工艺计算 3.1物料衡算
原料组成: 30%A 70%B (质量分数)
M=88.11 M=116.16 年处理量F=7200吨,年 AB
3088.11进料组成 == =1,x=0.639 ,0.361xxxAABF3070,88.11116.16
平均 ,,xM,Mx,105.8929/molAABB
37200,101000F,,1000kg/h,,9.44kmol/h冷物料尽量 300,24105.892
全塔物料衡算: F=D+W ?
D+W=F ? xxxWDF
? DxD,,,100%,0.95DFxF
,,Wx1, ? W,,,100%,0.97W,,Fx1,F
由????得:D=3.414kmol/h W=6.017kmol/h
x=0.947 =0.0285 xDW
5
3.2 热量衡算
精馏是大量耗能的单元操作,能量消耗是操作费用的主要损失。通过热量衡算,确定再沸器的热负荷和塔底的冷凝负荷,进而可算出加热蒸汽消耗量和冷公用工程循环水用量。
总热量衡算 Q+Q=Q+Q+Q+Q FBCDWL
5q,c,,t进料代入塔内热量Q= = 1.23×10kJh F /m1p11
4q,c,,t塔顶产品带出热量Q= = 3.13×10 kJh D /m2p22
4q,c,,t塔釜产品带出热量Q= = 6.56×10 kJh W /m3p33
5q,c,,t = 1.65×10 kJh 冷凝器热负荷Q= C /mcpcc
5q,c,,t蒸馏釜热负荷Q= = 1.38×10 kJh B /mbpbb
4热损失Q=1.38×10 kJh L/
本工艺利用釜液加热原料液,充分利用热能,具体表现为:
节约冷公用工程循环水12.05吨/日,节约加热水蒸气4.82吨/日。达到较好的节能效果,证明工艺过程比较合理。
6
4 工艺设备设计 4.1 筛板精馏塔设计
4.1.1馏出液和釜残液的流量和组成
原料组成: 30%A 70%B
M =88.11 M =116.16 年处理量F=7200吨,年 AB
3088.11进料组成 == =1,=0.639 ,0.361xxxxAABF3070,88.11116.16
平均 ,,xM,Mx,105.8929/molAABB
37200,101000F,,1000kg/h,,9.44kmol/h冷物料尽量 300,24105.892
全塔物料衡算: F=D+W ?
D+W=F ? xxxWDF
DxD ? ,,,100%,0.95DFxF
Wx,,1,W ? ,,,100%,0.97W,,Fx1,F
由????得:D=3.414kmol/h W=6.017kmol/h
=0.947 =0.0285 xxWD
7
4.1.2理论塔板数及理论最佳进料位置 跟据平衡数据表2画出t-x-y图形:
130
120
110
t100
90
80
700.00.20.40.60.81.0
X(y)
图1 乙酸乙酯和乙酸丁酯二元混合物的t-x(y)关系图
由图t-x,y,知进料液泡点温度=99.20? tb
,tt0b进料温度为t=? ,79.602
,1,q方程的确定
查表1知=32.23kJ/mol =36.79kJ/mol; rrAB
原料液汽化热=C+,1,,=35.14kJ/mol rxPAxrmFFB
在t=79.6?时 由图1知乙酸乙酯、乙酸丁酯比热容: m
C=198可J/,kmol?k, C=247kJ/,kmol?k, PPBA
c原料液的平均比热容= ,,,,xC,1,xC,229.31kJ/kmol,kpFPAFPBm
Cttr,,,,pmbFm所以 q,,1.26rm
8
xqFy,x,,4.85x,1.39故q线方程: q,1q,1
,2,精馏段的操作线方程,R=6.8,
R1 y,x,x,0.872x,0.121n,1nDnR,1R,1
,3,提留段的操作线方程:
精馏段液相摩尔流量L=RD=6.8×3.144=23.222kmol,h
L,qFw',,y,x,x,1.207x,0.00583 故方程为 m,mwm1L,qF,wL,qF,w
精馏段气相摩尔流量:V = (R+1)D = 26.637 kmol/ h
精馏段液相摩尔流量:L = RD = 23.222 kmol /h 提馏段气相摩尔流量:V ′= V―(1―q)F = 29.083 kmol/h
提馏段液相摩尔流量:L′ = = 35.105 kmol/h L,qF
,4,作图法确定理论板数
1.0
0.9
0.8
0.7
0.6气相摩尔分数 Y
0.5
0.4
0.3
0.2
0.1
0.00.00.10.20.30.40.50.60.70.80.91.0
液相摩尔分数 X
图2 理论板数的确定
9
由图知:精馏段理论板为2,提留段理论板数为3,进料板为第三块板。
4.1.3实际塔板数的计算
(1)定性温度计算:由t-x,y,图查得:
=78.50? =122.92? ttDW
,ttDW定性温度? t,,100.71m2
(2)平衡粘度计算
由图5查得:μ=0.21C μ=0.31C APBP平均 ,,,,x,,1,x,,0.27CP,0.27mpa,sZFAFB
,3,平均相对挥发度
,,y1-xWW,,,,,4.03x,0.0283,y,0.105塔底: WWW,,1-y,xwW
,,y1,xDD,,,,,4x,0.947,y,0.986塔顶: DDD,,1,yxDD
,,,WD平均相对挥发度: ,,4.015,2
,0.245由D′connell公式得全塔效率: ,,E,0.49,,,,0.48TL
2N,,5?实际板塔数: 精馏段: TET
3N,,8 提留段: TET
故实际最佳进料位置为第六块塔板,实际塔板数N=13块,含再沸器,
4.1.4塔径的确定
(1)精馏段流量
由t—x—y图可知:
10
塔顶流出液的平均摩尔质量:=106.03 kg/kmol M,xM,(1,x)MlDDADB
x,0.379,y,0.733进料板上的组成:, 33
M,xM,(1,x)M进料板的平均摩尔质量=105.52 kg/kmol l3A3B3
M精馏段液相的平均摩尔质量为(+)/2=105.78 kg/kmol M,Ml3D
M,88.11塔顶气相的平均摩尔质量为kg/kmol sD
M,yM,(1,y)M进料板气相的平均摩尔质量为=95.6 kg/kmol s33A3B精馏段气相的平均摩尔质量 kg/kmol M,(M,M)/2,91.86ss3sD
PM101.3,91.813s,,,,3.1精馏段气相的平均密度kg/m 8.314,(361.52)RT
3所以,精馏段的液相的平均密度为kg/ m ,,(,,,)/2,812.32l3D气液两相体积流量:
RDM,433lL,8.4,10m/s m/h,,3.024Lsh,l
(,1)RDM33sV,0.219 m/hm/s,,789.31Vsh,v
(2)提馏段流量
? 定性温度计算
进料板温度t=98.08? 塔底温度=122.11? 3tW
定性温度t=( t +)=110.1? m3tW
? 平均摩尔质量计算
M=yM+(1,y) M=95.6kg/kmol V3A3B
M=xM+(1,x) M=93.91kg/kmol L3A3B
塔釜: =0.0283 =0.119 xyWW
M=M+(1,) M=112.82kg/kmol VAByyWW
M=M+(1,) M=115.37kg/kmol LABxxWW
提馏段平均摩尔质量M=104.21 kg/kmol M=104.64 kg/kmol 平均平均VL
11
? 平均密度计算
利用气体状态方程求得气体平均密度
-3 ρ=PM/RT=(101.3×104.21) /8.314×(110.1+273)=3.31kg?m平均平均vV
液相平均密度
塔釜液相平均密度(按乙酸丁酯计)
-3=122.11? =774 kg?m ,tLw
进料板液相密度
x =0.379 3
进料板质量分数w= xM/( xM+(1- x) M =0.3233A3A3B)
-3=1/(0.32/ρA+0.68/ρB)=798.64 kg?m ,L
-3提馏段液相平均密度ρ =786.32 kg?m 平均L
V′=V,(1,q)F=29.083 kmol /h L′=L+qF=35.105kmol/h
33即V′=0.254m/s L′=0.00130m/s ss
1/2 1/2F= L′/ V′×(ρ/ρ)=0.0013/0.254×(786.32/3.31)=0.0789 LVssLV
(3)塔径的计算
取板间距H=400mm T
[8]查筛板塔泛点关联图10—42得C=0.078 f20
液相表面张力σ=15mN/m
0.2查得结果应按C/ C=(σ/20)进行校正 20
0.20.2C= C×(σ/20)=0.078×(15/20)=0.0736 20
1/2u= C×〔(ρρ )/ρ〕=1.132 m/s fL-VV
对本物系取泛点百分率为80%
,u设计气速: =0.8×1.132=0.906 m/s
L取堰长=0.7D w
,,,A,AAf[9]Tn由图查得溢流管面积和塔板总面积之比 ,,0.088,,AATT
,A,n,,0.3075A故 T1,0.088
12
,4,AT,D,则,塔径 =0.626m ,
根据塔设备系列化规格,将塔径圆整到D=0.7m=700mm
2d,2A,,0.385m塔横截面积: T4
2A,0.088A,0.0339m降液管面积: fT
V0.2543su,,,0.724m/s设计气速: A0.3509n
L,0.7D,0.49m堰长: w
u0.724n,,0.64实际泛点百分率 u1.132f
4.1.5塔盘的设计
h,0.05m选择平顶溢流堰,取堰高 w
h,0.03m采用垂直弓形降液管,普通平底受液盘取其间距 o
,W,0.025mW,W,0.06m取安定区 边缘区 css
[10]W,0.145D,0.1015m从图10-40求出 d
DDx,,(W,W),0.1885r,,W,0.325求得m m dsc22
x,2,2221Axrxr,2(,),sin)0.2305m代入公式= ar180
筛孔的设计
d,6mmt,3d取孔径 孔间距 oo
A0.907O,,,,0.1008开孔率 2A3a
4.1.6塔板流动性校核及负荷性能图
(1)流体力学的校核
13
? 塔板压降的校核
,3,,3mm,,0.5取板厚 d6o
A0.02323o,,0.0732 A,2Af0.385,2,0.0339T
[11]C,0.71由图10-45查得 o
求得干板压降为:
223,,3L4.68,,33h,,h,2.84,10E,2.84,10,1.025,,0.013,, d,,L0.49,,w,,[12]式中修正系数E可由图10-48查得
,Vsmu,,0.801,,A,2Af按面积计算的气体速度 asTA,2AfT
0.50.5,,F,u,,,0.801,3.31,1.46相应气体动能因子 aav
【】1,,0.6由图10-46查得液层充气系数
,,,,h,,h,h,0.6,0.05,0.013,0.0378液层阻力 Lwow
h,h,h,0.0888m于是板压降液柱 fdL
? 液沫夹带量的校核
F,0.0789按和泛点百分率0.64从图10-47查得求得 ,,0.018LV
液沫夹带量:
,,L0.0013786.320.018,,kg液体sLe,,,,,0.0243,,,0.1 v,,1,,V,100.0180.2543.31kg干气sV,,
? 溢流液泛条件的校核
H,h,h,h,,h,,溢流管中的当量清液高度可由式 dwowff
h,0.05m堰高 w
h,0.013m堰上液层高度 ow
板上液面落差?很小,一般可忽略。 降液管阻力损失:
14
22,,,L0.0013,,s,,,h,0.153,0.153,,0.0012m,, f,,L,h0.49,0.03,,wo,,
H,0.153m故降液管内的当量清液高度 d
,,0.6乙酸乙酯-乙酸丁酯混合物不易起泡,故取
Hd降液管内泡沫层高度,0.45m Hf,,0.225d,液体在降液管内停留时间校核
Af,H0.0339,0.153d,,,,3.99s停留时间 ,3s L0.0013s
? 漏液点的校核
u,漏液点孔速 ow
33F,4.51,0.00848,d,10,1.27,h,10,27.9,,,,,,owoLu,,F owvom
,,h,,h,hLwow
u,4.71m/s联立以上三式求得 ow
U10.9Ok,,,2.31塔板的稳定系数,(,2.0) 1.5U4.71ow
(2)负荷性能图
? 液相下限线
令h,0.006m并假定修正系数E,1.02m,,则 ow
233,,Lh0.006,10how,,,,,2.07 ,,,3L2.84,1.022.84,10w,,
3mL,1.461则液相最小流量: hminh
? 液相上限线
取停留时间3s
AH,,3600fT3mL,,16.3则液相最大流量: hhmax3
3mL,16.3在负荷性能图处作垂线即为液相上限线。 h
15
? 将漏液点看做直线,可由两点大致确定其位置 第一点取液体流量为设计负荷
3mmU,4.71,其漏液点孔速 L,4.68owshh
3mV,4.71,3600,A,394相应的气体流量 hoh
h,0.075h,0.0225第二点取, cd
2,,,U1vow,,h,干板压降 d,,2g,CLo,,
22g,h,,,C0.0225,2,9.81,786.32dLom则,漏液点孔速: = ,0.71,7.27U,ows3.31,v
,,Ls,,,,,,h0.00610.725h0.006F1.23漏液点板上持液量: cw,,Lw,,
Ls0.0750.00610.7250.050.0063.317.211.23,,,,,,,,则 0.49
33mmV,7.21,3600,A,603L,156.6求得 hohhh
由以上两点即可求得漏液线
? 液沫夹带线
同样将此线近似看作直线,由两点确定其位置
F,0.0789第一点取液气比与设计点相同 LV
e,0.1,令,求出相应的雾沫夹带分率 v
e0.1v,,,,0.076 w4.68,786.32L,0.1e,v914.4,3.31wv
【】1u,1.132m/sF和,根据从图10-47查得泛点百分率为92%,液泛速度 fLV
u,0.92u,1.04m/se,0.1时故在, vnf
相应的气体流量和液体流量为
3V,u,A,3600,1.04,0.3509,3600,1313.8m/s hnn
4.683L,,V,6.72m/s nn914.4
16
wL,2第二点取液气质量流率比 wv
,w3.31vLF,,2,0.13气液两相参数: LVw,786.32vL
e0.1v雾沫夹带分率: ,,,,0.048w2,0.1Le,vwv
【】1F和H从图10-47查得液泛百分率为92%,根据由图10-42查得LVT
c,0.082u,1.16m/su,1.26m/s,液泛速度, fonf
3由此可求得相应的气相流量 V,1.16,0.3509,3600,1465.4m/hh
,w3.313vLL,,,V,2,,1465.4,12.34m/s液相流量 hn,w786.32vL
由以上两点可得过量液沫夹带线。
? 溢流液泛线
对已经设计的筛板塔:
,,,,H,,H,h,0.6,0.4,0.05,0.27m降液管内清液层高度:时将发生dTw溢流液泛
3mL,6第一点取 hh
2
3,,L,3h,,h,2.84,10,E,,0.0154m堰上液高: ow,,Lw,,
,,Ls,,,h,0.153,0.0173m降液管阻力损失: f,,L,hwo,,
,,h,,h,h,0.0373m塔上液层有效阻力: Lwow
,,h,H,h,,h,h,h,0.15m液泛时干板压降: ddowfLw
1
2,,,,2gh,,,dLo,,u,,19.01m/s泛点孔速: o,,,v,,
3气体流量: V,u,A,3600,1590m/hhoo
17
3,h,0.0434mh,0.0446mh,0.0283mL,15m/s第二点取 fowLn
,,h,H,h,,h,h,h,0.104m液泛时干板压降 ddowfLw
3u,15.6m/sV,1303m/h oh
连接以上两点即可求得溢流液泛线
检验负荷性能图
1600
1400
1200
1000/h)3800
V (m600
400
200
00246810121416183V (m/h)
V上33,3.25 操作弹性为 V,1303.79m/hV,400m/h上下V下4.1.6 塔高的设计计算
精馏段实际塔高:5m ,0.4,2.00
提馏段实际塔高: 7,0.45,3.15m
塔顶设除沫器,富余高度取1m,塔底起到液封作用,取富余高度为1m,所以总的塔高为7.15m
4.2 列管式换热器设计
本台换热器主要将釜液低品位能量进行再利用,对原料液进行初步预热,既降低了冷凝水的消耗量,又使得废弃热量得以充分利用,体现了节能环保的思想。 4.2.1 换热器热量的衡算
将原料液用环境温度20? 预料到进料温度60? 需热量:
18
1000229.3134 ,,Q,Wcc,t,,,10,60,20,2.40,10W11p13600106.03
kg —冷料液流量 Wc1h
—料液平均比热容 cp1
—料液温度变化量 ,t
则 换热器总换热量 Q,Q,K,S,,t21m估估
W依据表4-6 初步估算传热系数值取 K,2502,估m,C逆流时由衡算关系式,冷热流体的温度
0000T,122.11Ct,60CT,70Ct,20C1221
,t,,t,t,121? ,2 ?,t,,56.06C逆,t22
T,Tt,t122.11,701221R,,,1.3P,,0.39 T,Tt,t60,202112查图4-19,a,得 ,,0.86
,初步确定换热器采用单壳程 ,t,,,,t,48.21Cm逆
4Q2.40,1022 S,,,1.99m估K,,t250,48.21m估
由于釜液流量较小,换热器不易重标准系列中选择,因此通过估算采用铜管 ,
d,0.005md,0.006m ,依据列管式换热器流速范围,初步确6mm,0.5mm12
U,0.8ms定管内流速 1
kmolW,W,M,698.8kghW,6.016由物料衡算得 则 ,Bh
Wh 单程管子数 n',,15.97,16根,23600du,11釜4
S1.99估依据传热面积估算管子长度 L',,,6.6m,,,d,n',0.006,162
L'6.6选用4管程,则单程管长 L,,,1.65mn4
4.2.2壳程内径设计
总管数16×4根,采用管中心距t=12mm,正三角形排列,采用面积相管原则:
19
2,,p3,,,,,,N,tt ,,,,22,,,,
确定壳程直径D=0.1m,故折流挡板间距h=0.06m
4.2.3 换热器总传热系数的校核 ,1,管程对流传热系数, 1
管内釜液流速
W,698.8,3600,,,,3600774,釜m u,,,0.79912s,0.7850.00516,,dn',14
,du0.005,0.799,774111Re,,,8962.7 1,4,3.45,101
3,4,Cp2.174,10,3.45,1011 Pr,,,6.151,0.1221
则对流传热系数
,0.1220.80.30.80.31W,0.023RePr,0.023,,8962.7,6.15,1405.2 ,2111,,m,kd0.0051
,,2,壳程对流传热系数 2
壳程流通面积:
d6,,,,,320 S,dD1,,0.06,0.1,1,,3,10m,,,,t12,,,,
冷料液流速:
qm10002mu,,,0.12 2,3s,S,3600,798.64,3,102
正三角形排列的当量直径:
,,,322,,4l,d0,,222423,0.012,3.14,0.06,, de,,,0.0205m,d3.14,0.060
,deu0.0205,798.64,0.1222Re,,,4001.3 2,4,4.91,102
Pr,7.01由表查得 2
110.550.5533Nu,0.36RePr,,0.36,4001.3,7.01,1.05,69.28 u
,0.1212W,Nu,,,,69.28408.9 ,22,,m,kde0.0205,3,经校核得总传热系数 k料液与釜液均为清洁流体,故忽略污垢热阻,由于换热管为控制铜管,其导热率
较大,因而管壁热阻也不可计。
20
d1110.006,32,,,,,3.30,10 ,,kd408.91405.2,0.005211
Wk,303 则 与估计值相差不大 2,,m,k
4.2.4 实际传热面积
4Q2.40,10q2S,,,1.64m 与估计值基本相似 k,,t303,48.21
选择换热器传热面积:
2 S,,dl,n,3.14,0.006,1.65,64,1.99m选2
S选则 ,1.21 即传热面积有21%的裕量 S
4.2.5 换热器简图
其各项参数;管长1.65m,壳程直径0.1m,管子规格Φ6mm×0.5mm,管子数目64根,壳程数目1,管程数目4,接管尺寸60mm,排列方式正三角形错列。 4.3 离心泵选型
4.3.1 计算平均粘度
33,,900kg/m,,880kg/mt=20?时 查图3,得 AB
M,0.46P,SM,0.725mP,S 查图5,得 AaBa
3,,0.361,900,0.639,880,887.22kg/m原料液平均密度:
,,0.46,0.361,0.725,0.639,0.629mP,S 平均密度: a
21
4.3.2 计算管径
q,1000kg/h 流体质量流量 m
q10003mq,,,1.127m/h 则体积流量 v,887.22
取管内流速 估算 ,,1m/s
q1.127v 管直径 d,,,0.020m,,,3600,1,44
4.3.3 计算管路压头损失
若选用规格参数水煤气管 ,,26.8mm,2.75mm
内径 d,26.8,2,2.75,21.3mm,0.0213m
q1.127v 管内流速 u,,,0.879m/s,,22d,3600,0.0213,360044
d,0.0213,0.879,887.224uR ,,,2.641,10e,3M0.629,10
所选水煤气管的绝对粗糙度 ,,0.35mm
0.35,则 相对粗糙度 ,,0.0164d0.0213
, 查入图,得摩擦系数 R,,0.047,,ed
llee截止阀(全开) ,90?弯头一个 ,300,35dd
关口突然变大,,1, 取管长为8m
则管路压头损失
22l,,u80.0879le,,,(,,),0.047,(300,35,,1),,1.317m Hfd2g0.02132,9.814.3.4扬程的计算
由前面计算知原料罐与进料处的距离为 即,由于原料罐,,,4.6m4.6m
,p,0内和进料口处压力都可以近似为常压,所以,以原料管内液面为基准列伯
22
努利方程的扬程:
222u,u,p0.879,021H,,,,,,,,,0,4.6,1.317,,5.956m f,g2g2,9.814.3.5最大允许安装高度
3m 根据已知流量,扬程H=5.956 .可从离心泵规格表中选mg,1.127vh
用型号IS65-50-160型号的离心泵.其允许的汽蚀量2.0-2.5 取最大流量m,h,
下的值。这里取。 ,h,h,2.5m
已知:乙酸乙酯的安托因常数A=6.1395 B=1211.9 C=216.010
乙酸丁酯的安托因常数A=6.1533 B=1368.5 C=204.0
T=20?时
1211.9: lp,6.1395,,10.105kPgAa6,204.0
1368.5: lp,6.1533,,1.1064kPgBa6,204.0
p,10.105,0.361,1.1064,0.639,4.355kP 饱和蒸汽压 va
p,101.3kP当地环境压力,取吸入管长,吸入管的压头损失 l,0.6m0a
221u0.60.879,H,,,0.047,,,0.0521m fd2g0.02132,9.81
泵的最大允许安装高度
p,p101.3,4.35530vH,,,h,,H,,10,2.5,0.0521,8.586m fg允,g887.22,9.81
5设计总结
本设计任务是进行乙酸乙酯和乙酸丁酯二元混合物的分离。本次设计采用塔设备连续精馏的工艺进行分离。在工艺流程设计时遵循技术先进、生产安全、经济合理的原则。
为了合理利用热能,在工艺流程设计时,我们利用塔底高温的釜液通过热交换器将常温的原料液加热至60?后,然后泵进入精馏塔内。塔顶出塔蒸汽采用全凝器冷凝和换热器冷却,操作回流比按照设计原始条件取R=6.8。塔釜采用间接蒸汽加热。本设计充分体现节能理念,节约了冷却水与加热蒸汽,经济效益可观。
23
6参考文献
[1] 陈敏恒,丛德滋,方图南,齐名斋,化工原理.上下册.第三版.北京:化学工业出版社,2009
[2]王志魁,化工原理,第三版. 北京:化学工业出版社,2009 [3]贾绍义,柴诚敬,化工传质与分离过程,北京:化学工业出版社,2003 [4]黄璐 王保国 化工设计 北京:化学工业出版社,2001.2 [5]张洪流 化工原理-传质与分离技术分册 北京:国防工业出版社,2009.9 [6]邹华生 钟理等 传热传质-过程设备设计 广州:华南理工大学出版社,2007.6 [7]路秀林 王者相 塔设备 北京:化学工业出版社,2004.1 [8]匡国柱 史启才 北京:化工单元过程及设备课程设计2001.10
24
致谢
本课题在进行过程中得到鞠彩霞老师的悉心指导。论文行文过程中,鞠老师多次帮助我们组分析思路,开拓视角,在我们遇到困难的时候给予我最大的支持和鼓励。在此,谨向鞠老师致以诚挚的谢意和崇高的敬意。
感谢大学三年来戎老师、肖老师、董老师等化学系所有老师对我们的教育培养。正是您们的辛勤工作,才使我们完成设计。浓浓师恩,终生不忘。
感谢一组全体成员的共同努力,正是你们的团队协作能力和责任心,才有今天课程设计的展现。在此,向一组成员表示感谢。
25
附录:物性图表
表1 乙酸乙酯与乙酸丁酯的基础物性
分子量(kg/kmol) 沸点(?) 汽化潜热(kJ/mol)
乙酸乙酯 88.11 77.06 32.23 乙酸丁酯 116.16 126.11 36.79
表2 常压下乙酸乙酯-乙酸丁酯溶液的平衡数据
温度(?) 液相中乙酸气相中乙酸温度(?) 液相中乙酸气相中乙酸
乙酯的摩尔乙酯的摩尔乙酯的摩尔乙酯的摩尔
分率 分率 分率 分率 126.0 0 0 91.7 0.53 0.84 120.6 0.05 0.19 89.7 0.58 0.87 115.9 0.11 0.34 87.8 0.63 0.89 111.7 0.16 0.45 86.0 0.68 0.91 107.9 0.21 0.54 84.3 0.74 0.93 104.6 0.26 0.62 82.8 0.79 0.95 101.5 0.32 0.68 81.3 0.84 0.96 98.7 0.37 0.73 79.8 0.89 0.98 96.2 0.42 0.77 78.5 0.95 0.99 93.9 0.47 0.81 77.2 1 1
26
图1 组分液体比热
图2 组分气体比热
27
图3 组分液体密度
图4 组分气体密度
28
图5 组分液体黏度
图6 组分气体黏度
29
图7 组分液体的导热系数
图8 组分气体的导热系数
30
转载请注明出处范文大全网 » 不同温度_压力下环己烷_乙酸乙酯体系液体密度的测定和预测